Линейные подшипники

Технические характеристики

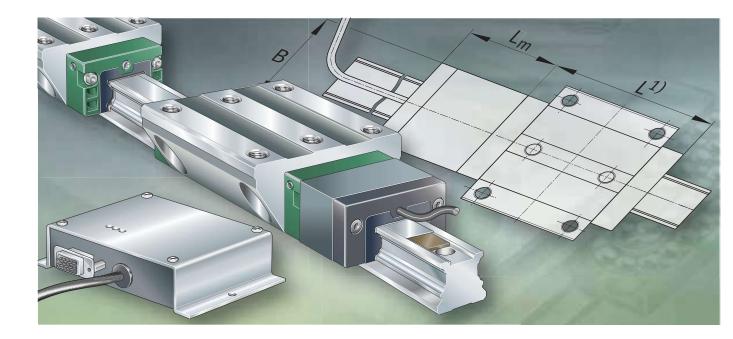
По вопросам продаж и поддержки обращайтесь:

Алматы (727)345-47-04 Ангарск (3955)60-70-56 Архангельск (8182)63-90-72 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Благовещенск (4162)22-76-07 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Владикавказ (8672)28-90-48 Владимир (4922)49-43-18 Волгоград (844)278-03-48 Волоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Коломна (4966)23-41-49 Кострома (4942)77-07-48 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Курган (3522)50-90-47 Липецк (4742)52-20-81

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Ноябрьск (3496)41-32-12 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Петрозаводск (8142)55-98-37 Псков (8112)59-10-37 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Саранск (8342)22-96-24 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Сыктывкар (8212)25-95-17 Тамбов (4752)50-40-97 Тверь (4822)63-31-35

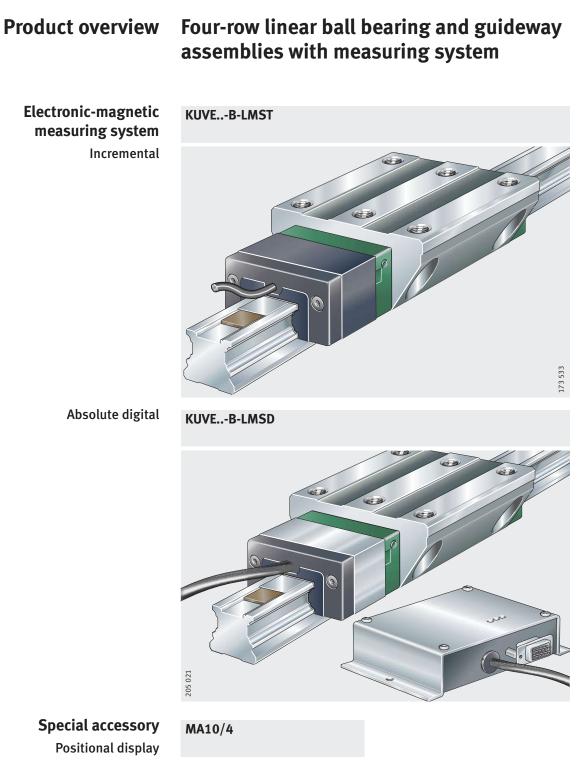
Россия +7(495)268-04-70 Казахстан +7(727)345-47-04

27)345-47-04 Беларусь +(375)257-127-884

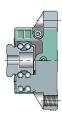

Узбекистан +998(71)205-18-59

Тольятти (8482)63-91-07 Томск (3822)98-41-53 Тула (4872)33-79-87 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Улан-Удэ (3012)59-97-51 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Чебоксары (8352)28-53-07 Челябинск (351)202-03-61 Черповец (8202)49-02-64 Чита (3022)38-34-83 Якутск (4112)23-90-97 <u>Яросп</u>авль (4852)69-52-93

Киргизия +996(312)96-26-47


эл.почта: iap@nt-rt.ru || сайт: https://ina.nt-rt.ru/

Four-row linear recirculating ball bearing and guideway assemblies


With integral measuring system

Four-row linear ball bearing and guideway assemblies with measuring system

Features	These linear recirculating ball bearing and guideway assemblies comprise a carriage with an adapted measuring head and a guideway for location of the magnetic strip and covering strip. Measurement is carried out by incremental or absolute digital means. The guidance systems expand on the advantages of the proven linear recirculating ball bearing and guideway assemblies KUVE without a measuring system by the direct measurement of travel distances.
Mechanical component	The mechanical component of the monorail guidance system corresponds to linear recirculating ball bearing and guideway assemblies KUVE. These units can support forces from all directions and moments about all axes, are preloaded and have high accuracy, rigidity and load carrying capacity. Mechanical features: see page 235.
Measuring system	The measuring system is used to measure the displacement distance. It directly measures the distance covered by means of magnetic scanning (Incremental or absolute measurement) irrespective of the quality of the drive. The magnetic strip has a single track dimensional scale with a pole pitch of 5 mm. The maximum travel speed of the carriage is 360 m/min, the maximum measurement length is 90 m.

Four-row linear ball bearing and guideway assemblies with measuring system

Incremental measuring system

Linear recirculating ball bearing and guideway assemblies KUVE..-B-LMST+EP have an incremental length measuring system with a fixed reference point, KUVE..-B-LMST+MP have the same system with a multiple reference point, *Figure 1*. The technical data are given on page 329.

The multiple reference point is a freely selectable reference point and can be defined over the whole measurement length on a 5 mm grid.

Ordering examples: see page 332 and page 333.

3)

KUVE..-B-LMST+EP KUVE..-B-LMST+MP

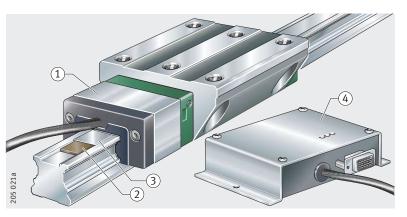

Adapted measuring head
 ② Guideway
 with integral magnetic strip
 ③ Covering strip

Figure 1 Incremental system

Absolute digital measuring system

Linear recirculating ball bearing and guideway assemblies KUVE..-B-LMSD have an absolute digital length measuring system. The electronic evaluation system is connected directly to the measuring head, *Figure 2*. The technical data are given on page 330.

Ordering example: see page 334.

KUVE..-B-LMSD

 ① Adapted measuring head
 ② Guideway with integral magnetic strip
 ③ Covering strip
 ④ Electronic evaluation system ASA 510

Figure 2 Absolute digital system

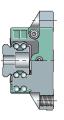
Design of measuring system

Designs

The designs of the measuring system are shown in the following table.

Measuring system	Guideway	Reference signal	Magnetic strip	Accuracy class (relative) ¹⁾
LMST+EP Length measuring system, incremental, TTL with single reference point	TKVDLMSD	Single point	MB500- LMST+EP	KL3
LMST+MP Length measuring system, incremental, TTL with multiple reference point	TKVDLMSD	Multiple point	MB500-LMSD	KL3
LMSD Length measuring system, absolute digital	TKVDLMSD	-	MB500-LMSD	KL3

 $^{1)}$ Accuracy class of magnetic strip: - KL3: 0,05 mm = $\pm 25~\mu m$


Designs continued

Measuring system	Sensing head	Resolu- tion ¹⁾	System accuracy (absolute)
LMST+EP Length measuring system, incremental, TTL with single reference point	ABTKO- LMST+EP	AU3	±(0,03 + 0,01×L) mm ²⁾
LMST+MP Length measuring system, incremental, TTL with multiple reference point	ABTKO-LMST + MP	AU3	±(0,03 + 0,01×L) mm ²⁾
LMSD Length measuring system, absolute digital	ABTKO LMSD	AU4	±(0,025 + 0,01×L) mm ²⁾

¹⁾ Resolution class of sensing head: – AU1: 0,001 mm = 1 μ m (by agreement for LMST) – AU3: 0,005 mm = 5 μ m – AU4: 0,01 mm = 10 μ m.

 $^{2)}\,$ L in m at +20 °C and per metre or part thereof.

Four-row linear ball bearing and guideway assemblies with measuring system

Available measuring system for series and size

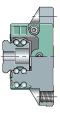
Series	Size				
	KUVE20-B	KUVE25-B	KUVE30-B	KUVE35-B	KUVE45-B
KUVEB	•	•	•	•	•
KUVEB-L	•	•	•	•	•
KUVEB-H	-	•	•	•	•
KUVEB-HL	-	•	•	•	•
KUVEB-S	•	•	•	•	•
KUVEB-SL	•	•	•	•	•
KUVEB-SN	•	•	•	•	•
KUVEB-SNL	•	•	•	•	•
KUVEB-N	•	•	•	•	•
KUVEB-NL	•	•	•	•	•
KUVEB-E	•	•	•	•	•
KUVEB-EC	•	•	•	•	•
KUVEB-ES	•	•	•	•	•
KUVEB-ESC	•	•	•	•	•

Special accessory Positional display

The positional display MA10/4 is an individually programmable single axis device with a 12 character LCD display, high contrast and dot matrix, *Figure 3*.

The display shows the evaluated information from the magnetic sensors.

MA10/4

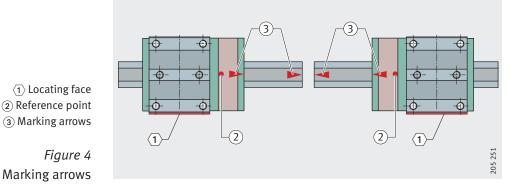

Figure 3 Positional display

Design and safety guidelines Attention!

Note the design and safety guidelines starting from page 240.

Measuring system for incremental length measurement Technical data

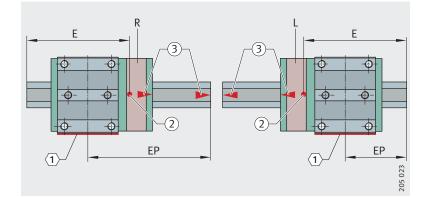
Feature	Technical data
Operating voltage	24 V DC±20 %, standard
Cable length	Open cable ends 2 m cable (standard), other cable lengths available by agreement
Cable sheath	PUR, oil-resistant, standard
Output switching	Line Driver (LD) standard, 5 V square wave output signal to RS422
Reference signal	Periodic index (LMST+MP) Fixed index (LMST+EP)
Resolution	0,005 mm, standard
Power consumption	max. 70 mA, to 24 V DC zero load
Output signals	A Quad B 5V TTL
Travel speed	max. 6,9 m/s (of magnetic sensor)
Distance between strip and sensor	max. 1,5 mm, over whole measurement length
System accuracy	\pm (0,03 + 0,01×L) mm [L in m], at T _u = +20 °C; L = length per metre or part thereof
Repeat accuracy	± 1 increment = $\pm 0,005$ mm
Temperature range	Working temperature –10 °C to +70 °C Storage temperature –30 °C to +80 °C
Humidity	100 % rF, dew formation permissible
Interference protection class	3, to IEC 801
Magnetic sensor type	MSK 500/1
Reference point	KUVE-LMST+EP: single reference point KUVE-LMST+MP: multiple reference point

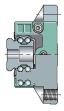


Four-row linear ball bearing and guideway assemblies with measuring system

Measuring system for absolute length measurement Technical data

Feature	Technical data
Operating voltage	24 V DC±20 %, standard
Cable length	2 m standard (fixed), between the measuring head and the electronic evaluation system
Measurement length	max. 83 m
Dimensional scale	1 track, pole pitch 5 mm
Positional detection	current-free, 3 V lithium battery, life approx. 7 to 10 years according to ambient temperature
Cable sheath	PUR, oil-resistant, standard
Output switching either or	SSI, standard (to RS422 A, max. 1 MHz) RS485, ASCII protocol
Resolution	0,01 mm, internally adjustable
Power consumption	< 100 mA, protection against reverse polarity
Connection type	D-SUB 9 pin
Housing for electronic evaluation system	Sheet steel, zinc electroplating
Interference protection class	3, to IEC 801
Travel speed	max. 6 m/s
Distance between strip and sensor	max. 2 mm, over whole measurement length
System accuracy	\pm (0,025 + 0,01×L) mm [L in m], at T _u = +20 °C; L = length per metre or part thereof
Repeat accuracy	$\pm 1 \text{ digit} = \pm 0,01 \text{ mm}$
Temperature range	Working temperature 0 °C to +60 °C Storage temperature –30 °C to +70 °C
Humidity (electronic evaluation system)	95 % rF, dew formation permissible
Protection type (electronic evaluation system)	IP 40 to DIN VDE 0470, CE inspection symbol
Mass	approx. 550 g, electronic evaluation system with cable and measuring head

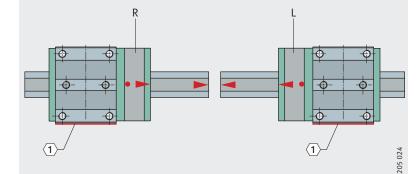

Fitting When fitting the KUVE..-B-LMST+EP, attention must be paid to the direction of the arrows, *Figure 4*. The arrow on the magnetic strip and on the measuring head must point in the same direction.



Ordering example, ordering designation Ordering data required

The following must be stated when ordering:

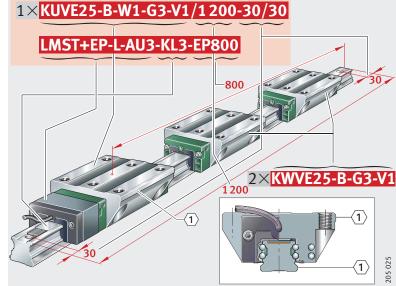
- the type of measuring system,
 - see table Designs, page 327
 incremental (LMST) with single or multiple reference point (EP or MP)
 absolute digital (LMSD)
- the position of the measuring head: left (L) or right (R) with reference to the locating face, *Figure 5* and *Figure 6*
- the reference signal in the LMST version
 - single point (EP)
 - multiple point (MP)
- the position of the reference point (EP) in mm, *Figure 5*
 - EP = distance between the end face of the guideway and the centre of the carriage
 - E = distance between the end face of the guideway and the reference point (calculated by Schaeffler)
- the resolution of the sensing head
 - $AU3 = 5 \mu m$ for LMST (EP and MP)
 - AU4 = 10 μ m for LMSD
- the accuracy class of the magnetic strip - KL3 = 0,05 mm.



KUVE..-B-LMST+EP

Locating face
 Reference point
 Marking arrows

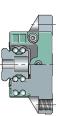
Figure 5 Position of the reference point


KUVE..-B-LMST+MP KUVE..-B-LMSD

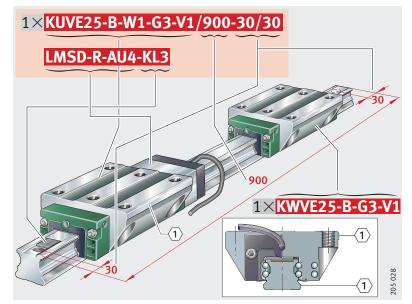
 $\langle \underline{1} \rangle$ Locating face

Figure 6 Position of the measuring head (R or L) with reference to the locating face

Four-row linear ball bearing and guideway assemblies with measuring system

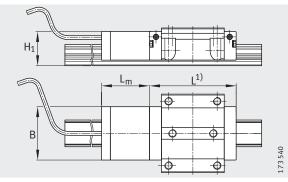

Incremental measuring system with single reference point Linear guidance system data	Four-row linear ball bearing and guideway assembly with electronic-magnetic measuring system Size Carriage type Number of carriages per unit ¹⁾ Accuracy class Preload class Guideway length a_L a_R ¹⁾ Only one carriage is fitted with a measuring head, independent of the number of carriages on the guideway. The carriages can be arranged in any sequence. It is also possible to fit several carriages with measuring heads guideway and magnetic strips with several independent refere Please contact us in this case.	
Measuring system data Ordering designation	Length measuring system, incremental, TTL Reference signal: single point Position of measuring head on left of carriage with reference to locating face Resolution of sensing head Accuracy class of magnetic strip Position of reference signal in relation to centre of carriage 1×KUVE25-B-W1-G3-V1/1200-30/30LMST+EP-L-AU3 2×KWVE25-B-G3-V1, <i>Figure 7</i>	LMST +EP L AU3 KL3 EP800 -KL3-EP800
	1×KUVE25-B-W1-G3-V1/1200-30/30	

 $\langle\underline{1}\rangle$ Locating face


Figure 7 Ordering example, ordering designation

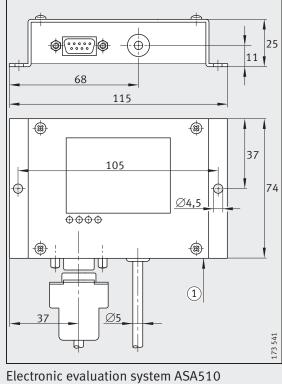
Incremental measuring system with multiple reference point Linear guidance system data	Four-row linear ball bearing and guideway assembly	
	with electronic-magnetic measuring system Size Carriage type Number of carriages per unit ¹⁾ Accuracy class	KUVE 25 B W1 G3
	Preload class Guideway length a _L a _R	V2 1 200 mm 30 mm 30 mm
	 ¹⁾ Only one carriage is fitted with a measuring head, independent of the number of carriages on the guideway. The carriages can be arranged in any sequence. 	
Measuring system data	Length measuring system, incremental, TTL Reference signal: multiple point; by means of an externa switch, any reference position can be defined and	LMST al
	changed, pole pitch 5 mm Position of measuring head on left of carriage	+MP
	with reference to locating face	L
	Resolution of sensing head Accuracy class of magnetic strip	AU3 KL3
Ordering designation	1×KUVE25-B-W1-G3-V2/1200-30/30 LMST+MP-L-AU	3-KL3
	1× KWVE25-B-G3-V1 , <i>Figure 8</i>	
	1×KUVE25-B-W1-G3-V2/1200-30/30	
	LMST+MP-L-AU3-KL3	
		- 30 -
		5-B-G3-V1
$\langle \underline{1} \rangle$ Locating face		
Figure 8	30	
Ordering example, ordering designation		505 027

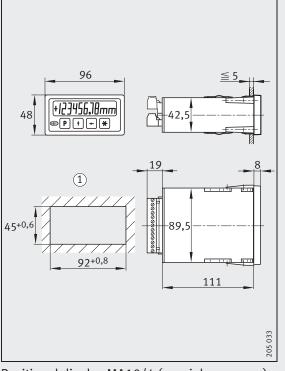
Four-row linear ball bearing and guideway assemblies with measuring system


Absolute digital measuring system Linear guidance system data	Four-row linear ball bearing and guideway assembly with electronic-magnetic measuring system Size Carriage type Number of carriages per unit ¹⁾ Accuracy class Preload class Guideway length a_L a_R ¹⁾ Only one carriage is fitted with a measuring head, independent of the number of carriages on the guideway. The carriages can be arranged in any sequence.	KUVE 25 B W1 G3 V1 900 mm 30 mm 30 mm
Measuring system data	Length measuring system, absolute digital Position of measuring head on right of carriage with reference to locating face Resolution of sensing head Accuracy class of magnetic strip	LMSD R AU4 KL3
Ordering designation	1×KUVE25-B-W1-G3-V1/900-30/30 LMSD-R-AU4-KL3 1×KWVE25-B-G3-V1, <i>Figure 9</i>	

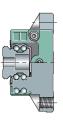
 $\langle \underline{1} \rangle$ Locating face

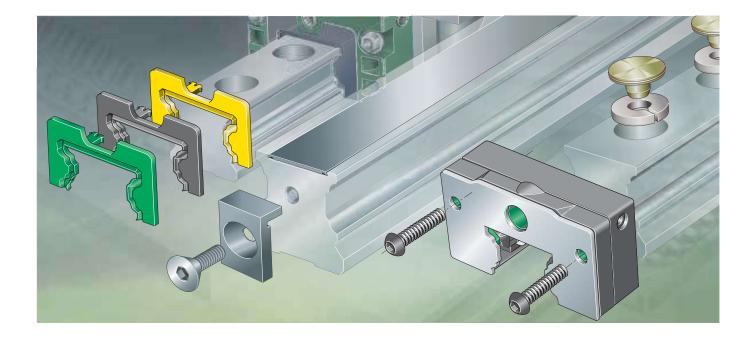
Figure 9 Ordering example, ordering designation


Four-row linear recirculating ball bearing and guideway assemblies with integral measuring system

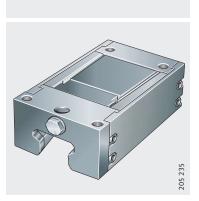

KUVE ... - B-LMST, KUVE ... - B-LMSD

Dimension table · Dimensions in mm					
Designation		Dimensions			
		В	L _m	L	H ₁
KUVE20-BLMST	KUVE20-BLMSD	40,6	45	1)	26,6
KUVE25-BLMST	KUVE25-BLMSD	46	45	1)	30,5
KUVE30-BLMST	KUVE30-BLMSD	58	48	1)	37,5
KUVE35-BLMST	KUVE35-BLMSD	68	48,6	1)	43,5
KUVE45-BLMST	KUVE45-BLMSD	84,6	49,7	1)	51,5


¹⁾ \overline{L} = standard length of linear recirculating ball bearing and guideway assembly.

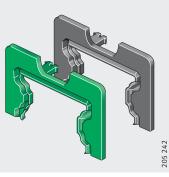

(1) Cable length 2 m

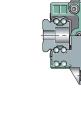
Positional display MA10/4 (special accessory) ① Panel outline to DIN 43 700

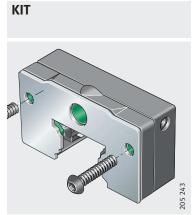


Closing plugs Guideway covering strips Rolling-in device for covering strip Clamping lugs and clamping strips Braking and clamping element Sealing and lubrication elements – system KIT Gearbox Coupling Drive shaft Clamping joint Lubricant dispenser

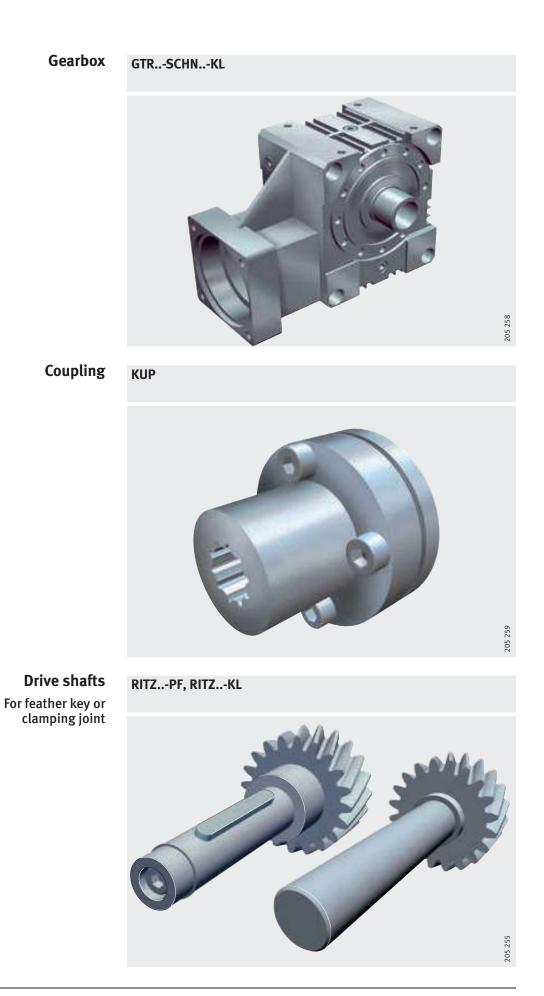
Product overview Accessories


Braking and clamping element

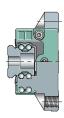

nents – KIT tem KIT nd wiper ng seal – mple KIT


BKE.TKVD

Sealing elements – system KIT End wiper and smooth-running seal – example KIT



Lubrication elements – system KIT Long term lubrication unit – example KIT



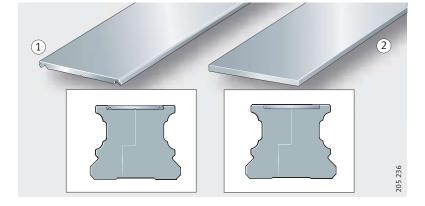
Product overview Accessories

205 257

205 256

Closing plugs	Closing plugs are used to close off the counterbores for the fixing screws in the guideways. As a result, the surface of the guideway is completely flush. In addition to the standard plastic closing plugs, brass closing plugs and closing plugs with clinch ring are also available.	
Brass closing plugs	Closing plugs KAM are particularly suitable for conditions involving hot swarf, aggressive media and vibrations, <i>Figure 1</i> .	
КАМ		
<i>Figure 1</i> Brass closing plug		210 023a
With clinch ring	Brass closing plugs of type KAMSA comprise a brass plug with a plastic clinch ring, <i>Figure 2</i> . The clinch ring ensures secure seating of the closing plug in the counterbore.	a
KAMSA		
 Brass plug Plastic clinch ring 		
<i>Figure 2</i> Closing plug with clinch ring		210 039

Guideway covering strips Covering strips are an alternative to closing plugs. They completely cover the counterbores for the fixing holes in the guideways and close these off flush with the guideway surface.

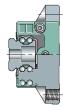

Adhesive bonded or clip fit

Covering strips are available in two designs. The covering strip ADB is adhesive bonded in the slot in the guideway, the covering strip ADB-K is clipped into the slot, *Figure 3*.

Attention!

The clip fit covering strip must be fitted using the rolling-in device ERW, see page 346.

For fitting of covering strips see page 77 to page 79. Where applications using the covering strip are planned, please contact us.


ADB-K ADB

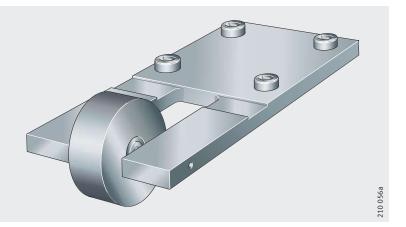
Clip fit
 Adhesive bonded

Figure 3 Guideway covering strip

Retaining plate

The retaining plate HPL.ADB fixes the covering strip ADB-K to the end of the guideway, *Figure 4*. It is included in the delivery.

HPL.ADB


Figure 4 Retaining plate for covering strip

205 237

Schaeffler Group Industrial

Rolling-in device The clip fit covering strip ADB..-K is fitted using the fitting device ERW. As a result, it is securely located in the guideway, *Figure 5*.

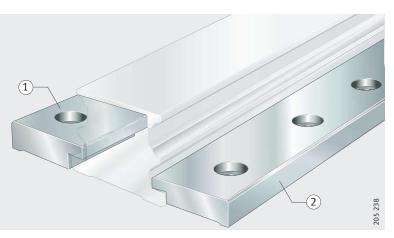
The rolling-in device must be ordered separately. When ordering, the size of the linear recirculating ball bearing and guideway assembly KUVE must be stated; see Ordering example.

ERVV

Figure 5 Rolling-in device for covering strip

Ordering example, ordering designation

Ordering designation


Clamping lugs and clamping strips

A rolling-in device for the covering strip ADB18-K for KUVE35-B is to be ordered.

1×**ERVV35**

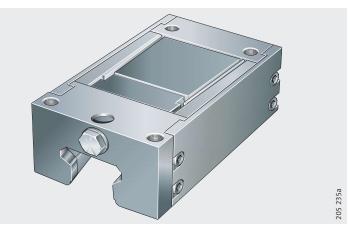
Clamping lugs SPPR and clamping strips SPPL are used to clamp guideways TKVD25-K to profiled sections, *Figure 6*. The lugs and strips are made from aluminium and locate in the longitudinal slots in the base of the guideway.

Clamping lugs and clamping strips are available for the guideways of the monorail guidance system KUVE25-B-K, *Figure 6*.

SPPR SPPL

Clamping lug
 Clamping strip

Figure 6 Clamping lug and clamping strip


Braking and clamping element

The braking and clamping element BKE.TKVD is used, for example, as a positionally independent safety system for linear drives where the drive cannot fully provide the braking and clamping function, *Figure 7*.

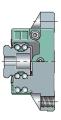
The compact construction and the arrangement of the elements saves space and no special devices are required.

If particularly high braking forces are required, several braking and clamping elements can be fitted.

The system automatically compensates any clearance occurring up to the wear limit of the brake shoes, see Automatic clearance compensation, page 349. The elements are thus maintenance-free.

BKE.TKVD

Figure 7 Braking and clamping element


Mechanical braking and clamping forces

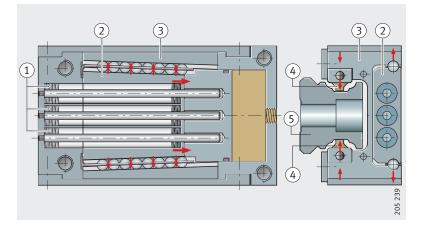
The elements operate by purely mechanical means, they therefore function even if a power failure occurs and are reliable in any mounting position; for a description of their function, see page 348. This eliminates safety problems resulting from power failure – a possibility with electronically braked systems.

The system carries out braking only when no pressure is present. This allows safety-focussed control even in emergencies. The hydraulic brake opens under a pressure of approx. 55 bar.

If appropriate control is provided, even vertical axes can be rapidly braked to a stationary position. In a suspended arrangement, however, the entire guidance unit should be secured by a drop guard, for an example see page 67.

When the brake is locked, an axial clearance of up to 0,25 mm can occur. This must be noted if the elements are used for locating.

Short reaction timeThe clearance-free adjustment of the brake shoes ensures a short,
consistent reaction time (in size 35 for example <30 m/s).


In order to ensure the shortest reaction times, the Schaeffler Group has worked with a manufacturer of fluid power devices to develop a hydraulic unit with a special valve. The unit can be purchased directly from the manufacturer.

Attention! Braking and clamping elements are one part of the emergency braking system. Their reliable operation also depends on the hydraulic components and the control system.

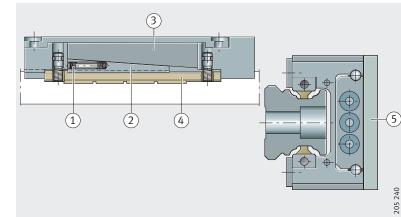
If the system is activated frequently, contact us.

Function Three disc spring columns generate the braking and clamping force, *Figure 8*. Thanks to this mechanical spring energy store, the system operates extremely reliably without external energy.

The force is transmitted to the brake shoes by mechanical means. If the braking or clamping function is activated, the spring columns push a wedge-shaped slider between the upper legs of the H-shaped saddle plate. This presses the upper legs outwards and the lower ones inwards. The brake shoes clamp against the guideway, but not on the raceways.

① Disc spring columns
 ② Wedge-shaped slider
 ③ H-shaped saddle plate
 ④ Brake shoes
 ⑤ Guideway

Figure 8 Functional components


Automatic clearance compensation

Wear of brake shoes As the system clamps not only stationary guidance systems, but also moving ones, the brake shoes are subject to wear resulting from abrasion. However, clearance between the brake shoes and brake contact surfaces increases the system reaction time.

Wear compensation In order to ensure consistent clearance-free contact of the brake shoes against the contact surfaces, wear of the linings is automatically compensated by mechanical means up to the wear limit. Compression springs slide a wedge between the brake shoes and the saddle plate, *Figure 9*. This ensures that the element always operates without clearance. The wear compensation mechanism is designed such that, in the opened condition, the brake shoes are adjacent to but not in contact with the guideway surface. This ensures that there is no wear or displacement resistance during movement of the guidance system.

Adapter plate

For the H variant of the carriages, an adapter plate is necessary, *Figure 9*. The adapter plate is included in the delivery.

Compression springs
 Wedge
 Saddle plate
 Brake shoes
 Adapter plate for H variant

Figure 9

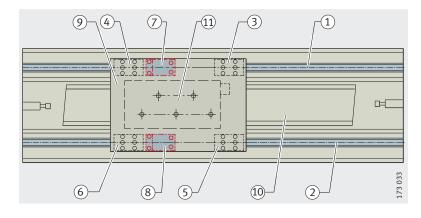
Wear compensation and adapter plate

Easy to fit

Attention!

Braking and clamping elements are particularly easy to fit. They are simply slid onto the guideway and screw mounted to the adjacent construction.

Due to the automatic wear compensation system, braking and clamping elements must be slid directly from the dummy guideway onto the guideway.


The element must never be separated from the guideway without using a dummy guideway and the dummy guideway must never be removed from the element.

Suitable for ... The elements give high braking and clamping forces within a very small design envelope. Their dimensions are matched to the INA standard and H carriages, can be used for the RUE guideways and can be easily integrated in existing applications based on INA linear guidance systems. The dimension table for the braking and clamping element is on page 353.

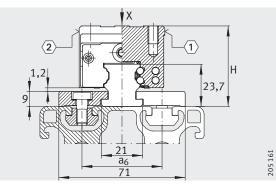
The compact construction and the arrangement of the elements directly on the guideway saves space and thus allows complete constructions with a reduced number of components.

They can also be used in applications without recirculating roller systems. In this case, the guideway is used only as a braking or clamping rail.

A typical arrangement as an emergency brake in an application with a linear motor is shown in *Figure 10*.

(1), (2) Guideways
 (3), (4), (5), (6) Carriages
 (7), (8) Emergency brakes
 (9) Table
 (10) Motor primary part
 (11) Motor secondary part

Figure 10 Typical application


Delivered condition

Ordering example, ordering designation Ordering designation The elements are premounted on a separate rail and clamped in place by means of a fitting screw. The screw is used to loosen and then move the fixed element. The fitting screw is later replaced by the hydraulic connector.

A braking and clamping element for KUVE35-B with a hydraulic connector on the end face is to be ordered.

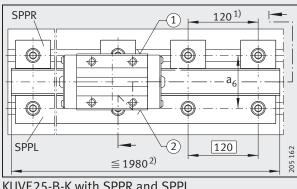
1×**BKE.TKVD35**

Guideway for profiled sections

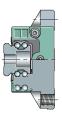
TKVD25-K with SPPR and SPPL (1) , (2) $^{4)}$

Dimension table · Dimensions in mm			
Guideway		Mounting dimensions	
Designation	Mass	a ₆	
	m		
	≈kg/m		
		40	
TKVD25-K	3,2	45	
		50	

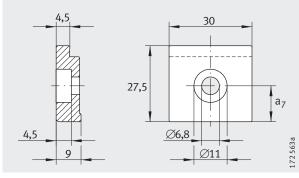
¹⁾ Recommended distance between screws.


 ²⁾ Maximum length of guideway and clamping strip; longer guideways are supplied in several pieces and are marked accordingly.

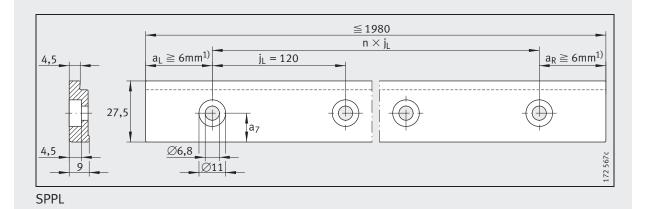
³⁾ The basic dynamic load rating C (page 271) is used to calculate the basic rating life. The permissible load is dependent on the profile and the type and quantity of fasteners.

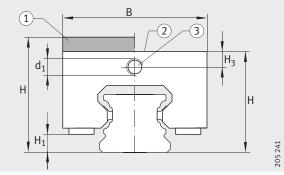

 $^{\rm 4)}$ $\langle \underline{\rm 1}\rangle$ Locating face

Arking


Dimension table · Dimensions in mm							
Carriage		Guideway	Dimensions				
Designation	Mass	Designation	н				
	m						
	≈kg						
KWVE25-B-H	0,41	TKVD25-K	45				
KWVE25-B-S	0,56	TKVD25-K	41				
KWVE25-B-SN	0,45	TKVD25-K	36				

KUVE25-B-K with SPPR and SPPL (1), (2) ⁴⁾

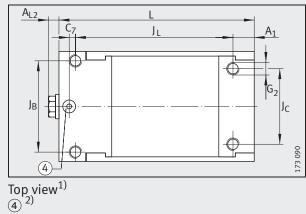

Clamping lug Clamping strip

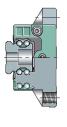

Dimension table · Dimensions in mm							
Clamping lug		Clamping strip	Dimensions				
Designation	Mass	Designation Mass		a ₇			
	m		m				
	≈g		\approx kg/m				
SPPR2540	0,02	SPPL2540	0,6	15,5			
SPPR2545	0,02	SPPL2545	0,6	13			
SPPR2550	0,02	SPPL2550	0,6	10,5			

 $^{1)} \ \overline{a_L \ \text{and} \ a_R}$ are dependent on the length of the strip.

Braking and clamping element

for four-row linear recirculating ball bearing and guideway assembly

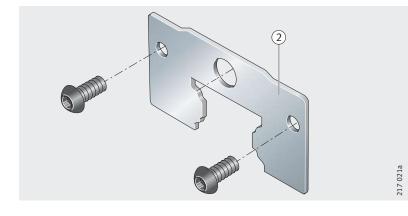




Dimension table · Dimensions in mm															
Designation		Dimensions													
	force	Н		В	L	J _B J _C	J _C	A ₁	J_L	C ₇	H ₁	H ₃	A_{L2}	d_1	G ₂
		Without adapter plate	With adapter plate												
	Ν														
BKE.TKVD25		36	_							-					
BKE.TKVD25-O	1 000	50	-	47	91	38	34	10	75	0	6,5 6	6	5	M6X1	M6
BKE.TKVD25-H			40							-		0			
BKE.TKVD25-H-SO		-	40							0					
BKE.TKVD35		48	_							-					
BKE.TKVD35-O	2 800	40	_	69	120	58	48	13,5	100	0	7,9	8,1	5	M8X1	M8
BKE.TKVD35-H	2 800	_	55	09	120	20	40	15,5	100	-	7,9	0,1	5	MOVI	1110
BKE.TKVD35-H-SO		-	22							0					
BKE.TKVD45	4 300							-				M8X1	M10		
BKE.TKVD45-O			- 85	141	70	60	15	113	5 13	10 5	5				
BKE.TKVD45-H		_	70	0)	141	/0	00			-		10		MOVI	MID
BKE.TKVD45-H-SO			70							5					

²⁾ ① With adapter plate
② Without adapter plate
③ Hydraulic connector
④ Hydraulic connector in top face (design 0, S0)¹⁾

Sealing and lubrication elements – system KIT	With their comprehensive range of standard accessories, monorail guidance systems can be easily used in numerous areas. Since the guidance systems are used in an extremely wide variety of applications, however, additional requirements are often placed on the lubrication and sealing components.					
Application-oriented complete package	If the standard components are not adequate for reliable operation and a long operating life, it is possible to draw on a finely graduated system of lubrication and sealing elements. These special accessories protect the rolling element system of the guidance systems against contamination and ensure lubrication appropriate to requirements with long relubrication intervals even under the most demanding operating conditions.					
Structured as a KIT	The elements are configured as the system KIT and are designed for various application conditions. Starting from the degree of contamination, the best combination in each case can be quickly and easily compiled, see Degree of					
	contamination shown in the ta		ations are possib	le and advisable is		
	The sealing elements are described on pages 355 to 357, for table see page 360.					
	The description of the lubrication elements is on page 358 and page 359, for table see page 364.					
Attention!	Only a proportion of the KITs can retrofitted. Parts that cannot be retrofitted must be ordered together with the linear recirculating ball bearing and guideway assembly and are supplied already fitted.					
Degree of contamination						
Attention!	The degree of contamination will vary depending on the market sector, the application and the environmental conditions. The definitions according to the table are therefore only an initial aid in the selection of KITs.					
	By agreement, we will be pleased to assemble complete packages for specific applications.					
Definition of the degree of	Degree of contamination					
contamination	Very slight	Slight	Moderate	Heavy		
	Clean environment	Coarse (large) metal swarf Clean environment No cooling lubricants	Coarse (large) metal swarf Slight exposure to, for example, cooling lubricants	Hot swarf (metal, aluminium) of widely varying size and shape, including very small swarf from HSC machining		

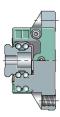

Aggressive media and dust as well as cooling lubricants

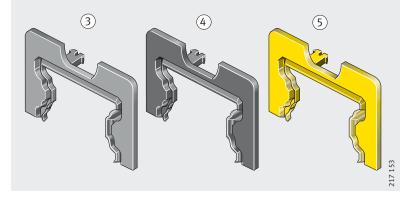
Sealing elements The following additional sealing components are available:

- end plates, page 355
- end wipers, page 355 and page 356
- end wipers with carrier plate, page 356
- additional wipers, page 356
- sealing strips, page 357.

End plates End plates are corrosion-resistant, non-contact components, *Figure 1*. They protect the end wipers located behind them against, for example, coarse contaminants and hot swarf.

There is a narrow gap between the guideway and the wiper.

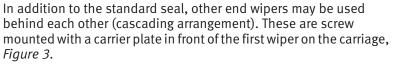

②End plate, non-contact


Figure 1 End plate

End wipers

End wipers are contact seals that are fixed to the end faces of the carriage.

They are available in a single lip design made from special high performance material, *Figure 2*.



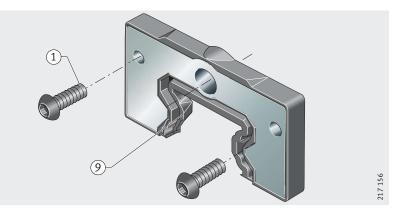
 ③ Gap seal, single lip, grey
 ④ End wiper, single lip, black
 ⑤ Smooth-running seal, single lip, yellow

> *Figure 2* End wipers

6

End wipers with carrier plate

The end wipers are of a single or double lip design and are made from special high performance seal material.


 Fixing screw
 End wiper, single lip
 End wiper, double lip
 Carrier plate for end wiper

> *Figure 3* End wipers

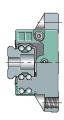
Additional wiper

For protection against aggressive media (for example acids, alkalis), special additional wipers made from FPM are available, *Figure 4*. The additional wipers are of single lip design.

217 155

 Fixing screw
 Additional wiper, single lip

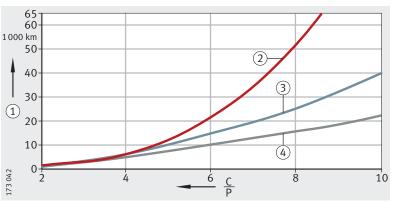
Figure 4 Additional wiper


Sealing strips Sealing strips are contact components that are fitted to the upper and lower longitudinal sides of the carriage, *Figure 5*. They protect the rolling element system against contamination and loss of lubricant.

Attention! Upper sealing strips should be used in addition to end wipers especially in applications where lubrication is critical, such as those involving fine dust or aggressive coolants.

 (1) Lower sealing strips, single lip
 (1) Upper sealing strips, single lip

> *Figure 5* Sealing strips


Lubrication elements	A long term lubrication unit is available as a lubrication component.
Long term lubrication unit Operating life of the linear guidance system	The operating life is defined as the life actually achieved by a linear guidance system. This may deviate significantly from the basic rating life. A sufficiently long operating life is only achieved, assuming the bearing arrangement is correctly designed, through optimum lubrication and sealing.
Grease operating life and relubrication interval	If guidance systems cannot be relubricated, the grease operating life becomes the decisive factor. This indicates the length of time for which a grease can be used without its function being impaired. For calculation of the grease operating life, see page 48. As the load increases, the grease is subjected to increasing strain. As a result, it ages more quickly. Premature destruction of the grease structure has an adverse effect on the performance characteristics of the grease. The grease operating life declines and relubrication must be carried out earlier. If the shortened relubrication intervals are not observed, the guidance system will fail before the end of the expected operating life. With decreasing grease operating life, the operating life of the linear guidance system is thus reduced.
Longer operating life by means of a long term lubrication unit	The volume of lubricating grease in the carriage is increased by the lubrication pockets in the saddle plate. If a long term lubrication unit KIT.KWVEB-4 is also fitted, this gives an additional improvement in the lubricant balance, <i>Figure 6</i> , page 359. The lubricant is stored in a high capacity reservoir and continuously released to the raceways via a transfer medium. Depending on the operating and environmental conditions, long relubrication intervals or even complete freedom from maintenance are possible as a result. The operating life of four-row monorail guidance systems KUVE with and without a long term lubrication unit is shown in <i>Figure 7</i> , page 359.
Function irrespective of position	Long term lubrication units are particularly suitable in applications where lubrication is of critical importance. They are screw mounted between the end piece and the wiper and function with equal reliability in either a horizontal or vertical mounting position.

With initial greasing and refillable

Due to their initial greasing, long term lubrication units are ready for immediate operation.

If they are ordered together with a KUVE, the monorail guidance system KUVE and long term lubrication unit are greased. If necessary, the reservoir can be refilled through lateral holes.

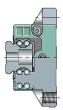
Double lip end seal Integrated double lip end seals give protection against grease loss and contamination.

 Fixing screws
 End plate
 End wiper, double lip
 Carrier plate
 Long term lubrication unit

Figure 6 Long term lubrication unit 217 157

 Displacement distance
 KUVE with long term lubrication unit (restricted by material fatigue)
 KUVE without long term lubrication unit (restricted by material fatigue)
 Competitor systems

Figure 7 Operating life with and without long term lubrication unit


Sealing elements KIT ¹⁾ Part 1				2	
КІТ	Description	Designation and KIT end number KIT.KWVEB ²⁾	Fixing screws K ₁ (2 pieces)	End plate, non-contact	
4 3	 Fixing screws K₁ End plate Gap seal, single lip End wiper, single lip 	100 ⁵⁾ 110 ⁶⁾		-	
	 (5) Smooth-running seal, single lip (6) End wiper, single lip (7) End wiper, double lip (8) Carrier plate for end wipers 	200 210	- 1	1	
	 9 Additional wiper, single lip 10 Sealing strip, lower, single lip 11 Sealing strip, upper, single lip 	220	1	1	
	117	300 309	- 1	-	
	217 0044	310 319	- 1	1	

Attention! The table is only a guide. The specific application conditions must be taken into consideration when selecting the elements.

The lubrication elements can be used in various combinations. However, not every combination is possible or advisable. For recommended combinations, see page 366.

- $^{1)}$ The KITs are available for the sizes KUVE15-B (-KT) to KUVE55-B (-KT) .
- ²⁾ Ordering example for KIT100 for KUVE-35-B: KIT.KWVE35-B-100.
- ³⁾ See figure bottom right.
- ⁴⁾ For definition see page 354.
- ⁵⁾ Standard for KUVE..-B and KUVE..-B-KT.
- $^{6)}$ Valid for sizes 15 to 25.
- ⁷⁾ Valid for sizes 20 to 45.

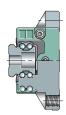
	End wipers			End wipers with carrier plate (8)		9	Sealing s	trips	Fitting	of KIT		Contamination ⁴⁾					
							Lower	Upper									
	3	4	5	6	1		10	11									
	Gap seal, grey	Contact type, single lip, black	Smooth-running seal,single lip, yellow	Contact type, single lip	Contact type, double lip	Additional wiper, single lip	Single lip	Single lip	Retrofittable ²⁾	Factory fit	Width S in mm ³⁾	Very slight	Slight	Moderate	Heavy		
	-	1				-			_	_		-	-	-			
	1	_	-	_	-	_	-	-			-		-	-	1-		
		1				_			_	_	1	-					
	_	-	-	_	_	_	-	-					-	-	-		
						-											
	_	-	1	-	-	_	-	-			1			-	-		
		1		1		-					5						
	_	-	-	1	-	-	-	_			5	-	-		•		
		1		1	_	_		_			6	_	_				
	_	_		Ţ		_					0						

Fixing screw	Fixing screws K ₁ , L _S , width S									
KUVE size	KIT end number	Fixing so	crew K ₁							
			L _s mm							
15	200, 210, 220, 300, 309	- M2	1 2							
20	310, 319, 360, 370	1012	1,3							
25	200, 210, 220, 300, 309	- M3	1 65							
30, 35	310, 319, 360, 370	1115	1,65							
45	200, 210, 220, 300, 309	M4	2.2							
55	310, 319, 360, 370	1014	2,2							

Accessories

Sealing elements KIT ¹⁾ Part 2			1	2
КІТ	Description	Designation and KIT end number KIT.KWVEB ²⁾	Fixing screws K ₁ (2 pieces)	End plate, non-contact
9 2 4	 Fixing screws K₁ End plate 	320 ⁷⁾	1	-
1	 (3) Gap seal, single lip (4) End wiper, single lip 	329 ⁷⁾	1	-
2 4	 (5) Smooth-running seal, single lip (6) End wiper, single lip 	330 ⁷⁾	1	1
1	 ⑦ End wiper, double lip ⑧ Carrier plate for end wipers 	339 ⁷⁾	1	1
	(9) Additional wiper, single lip(10) Sealing strip,	360		1
217 088a	lower, single lip ① Sealing strip,	370	- 1	-
	upper, single lip	900 ⁵⁾		
017 047 a		910	-	-

Attention!


The table is only a guide. The specific application conditions must be taken into consideration when selecting the elements.

The lubrication elements can be used in various combinations. However, not every combination is possible or advisable. For recommended combinations, see page 366.

The KITs are available for the sizes KUVE15-B (-KT) to KUVE55-B (-KT) .
 Ordering example for KIT100 for KUVE-35-B: KIT.KWVE35-B-100.

- ³⁾ See figure bottom right.
- ⁴⁾ For definition see page 354.
- ⁵⁾ Standard for KUVE..-B and KUVE..-B-KT.
- ⁶⁾ Valid for sizes 15 to 25.
- ⁷⁾ Valid for sizes 20 to 45.

End wipe	rs		End wipe	rs with	9	Sealing s	trips	Fitting	of KIT		Conta	aminat	ion ⁴⁾	
	r		carrier pla	-	ļ	Lower	Upper							
3	4	5	6	\bigcirc		10	11							
Gap seal, grey	Contact type, single lip, black	Smooth-running seal, single lip, yellow	Contact type, single lip	Contact type, double lip	Additional wiper, single lip	Single lip	Single lip	Retrofittable ²⁾	Factory fit	Width S in mm ³⁾	Very slight	Slight	Moderate	Heavy
-	1	_	_	_	1	_	-			5	_	_	-	
 -	_	_	_	-	1	_	-			5	-	-		
-	1	_	_	-	1	_	-			6	_	-		
-	_	_	_	-	1	_	-			6	-	-		
	_		_	1	_	_			6		-			
		_		T	_		-			5				_
					-	1		-					•	-
_	_	_	_	_	_		1	-		_	-	_	-	

KUVE size	KIT end number	Fixing sc	rew K ₁
			L _s mm
15	200, 210, 220, 300, 309	- M2	1.2
20	310, 319, 360, 370	1012	1,3
25	200, 210, 220, 300, 309	- M3	1,65
30, 35	310, 319, 360, 370		1,05
45	200, 210, 220, 300, 309	M4	2,2
55	310, 319, 360, 370	11/14	2,2
	•		

Accessories

Lubrication elements KIT ¹⁾		
KIT	Description	Designation and KIT end number
		KIT.KWVEB ²⁾
	 Fixing screws K₁ End plate Additional wiper, single lip Additional wiper, double lip Carrier plate for end wipers Long term lubrication unit 	400
	217 050a	430

Attention!

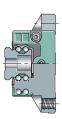
The table is only a guide.

The specific application conditions must be taken into consideration when selecting the elements.

The lubrication elements can be used in various combinations. However, not every combination is possible or advisable. For recommended combinations, see page 366.

¹⁾ The KITs are available for the sizes KUVE20-B (-KT) to KUVE45-B (-KT) .

²⁾ Ordering example for KIT400 for KUVE-35-B: KIT.KWVE35-B-400.


³⁾ See figure bottom right.

⁴⁾ For definition see page 354.

⁵⁾ Valid for sizes 20 to 35.

⁶⁾ Valid for size 45.

1	2	End wipers carrier plate	with e ⑧	12	Fitting of KIT			Contai	mination ⁴⁾		
Fixing screws K ₁ (2 pieces)	End plate, non-contact	Contact type, (9) single lip	Contact type, (J) double lip	Long term lubrication unit	Retrofittable	Factory fit	Width S in mm ³⁾	Very slight	Slight	Moderate	Heavy
1	-	-	1	1		-	14 ⁵⁾ 15,5 ⁶⁾	_		-	-
1	1	-	1	1		-	15 ⁵⁾ 16,5 ⁶⁾	_	_		

Fixing screw	s K ₁ , L _S , width S			
KUVE size	KIT end number	Fixing	screw K ₁	
			L _s mm	
20	400, 430	M2	1,3	
25, 30, 35	400, 430	M3	1,65	
45	400, 430	M4	2,2	K1
25, 30, 35 45	-			К1

Ls

S

217 048b

Accessories

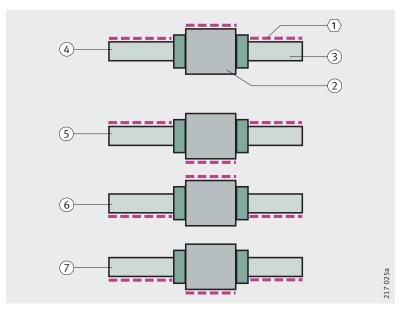
Recommended combinations																	
Designation and KIT end numbers KIT.KWVEB-	100	110	200	210	220	300	309	310	319	320	329	330	339	360	370	400	430
100	•	1	•			•	•	•	•	•	•	•	•	1			
110		•															
200			•														
210				•				•	•								
220					•												
300						•	•										
309						•	•										
310								•	•								
319								•	•								
320						•	•			•	•						
329						•	•			•	•						
330								•	•			•	•				
339								•	•			•	•				
360 ¹⁾														•			
370 ¹⁾															•		
400 ¹⁾														•		•	
430 ¹⁾															•		•
900	•		•		•	•	•	•	•	•	•	•	•	•	•	•	•
910						•	•	•	•	•	•	•	•	•	•	•	•

• Recommended combinations.

¹⁾ $\overline{\text{Only in conjunction with KIT.KWVE-B-900.}}$

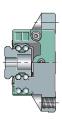
Configuration of KIT.KWVE

The description shows how an ordering designation is constructed for factory fitted KITs.


Attention!

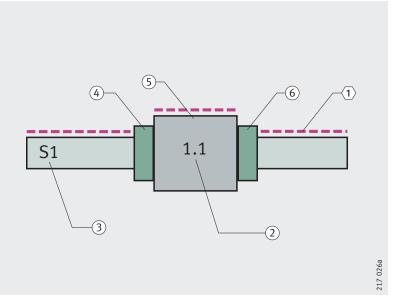
Definition of locating faces

Possible locating faces for guideways and carriages are shown in *Figure 8*. The locating faces are indicated by the broken lines.


Always pay attention to the position of the locating faces of the

carriage and guideway, Figure 8.

Locating face
 2 Carriage
 3 Guideway
 4 Standard KUVE..-B
 6 KUVE..-B-UU
 6 KUVE..-B-UU
 7 KUVE..-B-UU


Figure 8 Locating faces on guideways and carriages

Definition of KIT position on the carriage Attention!

KIT components can be fitted on the left, centre or right of the carriage, *Figure 9*.

In order to clearly define the KIT components, the carriage is always shown viewed with the locating face upwards.

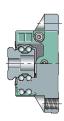
(1) Locating face
 (2) Carriage number (W) for each guideway set (W1.1, W1.n, W2.n)
 W1.1 indicates:
 1 = number of guideway
 .1 = number of carriage
 (3) Guideway set (S1, S2, Sn)
 (4) KIT.KWVE on left of carriage
 (5) KIT.KWVE on centre of carriage
 (6) KIT.KWVE on right of carriage

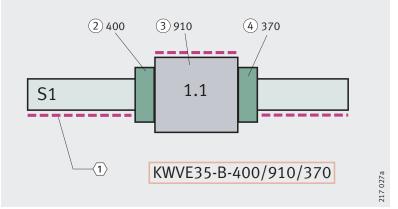
Figure 9

KIT position on carriage Position of locating face for guideway and carriage

Ordering example, ordering designation Unit with one guideway set **Attention!**

Four-row linear recirculating ball bearing and guidewa assembly KUV with KIT component


In order to clearly define the KIT components, the carriage is always shown viewed with the locating face upwards. The KIT structure is always described from left to right.


ng ay VE its	Four-row linear b and guideway as Size Carriage type, ful Guideways with o Number of guide Number of carria Accuracy class Preload class Guideway length a _L a _R	sembly l complement clip fit covering strip way sets ges per unit	KUVE 35 B ADB+K 1 W1 G2 V1 800 mm 40 mm
	Long term lubrica	ation unit, fitted on left	KIT.KWVE35-B-400
	Sealing strips, up	oper and lower	KIT.KWVE35-B-910
	Additional wiper,	double row, fitted on right	KIT.KWVE35-B-370
on	Designation of K System	T components: see <i>Figure 10</i> . KUVE35-B	

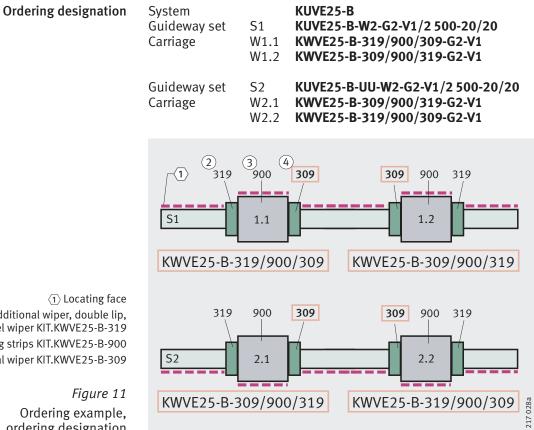
Ordering designation

set

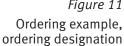
Guideway KUVE35-B-ADB+K-UO-W1-G2-V1/800-40/40 S1 Carriage W1.1 KWVE35-B-400/910/370-G2-V1

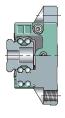
 $\langle 1 \rangle$ Locating face (2) Long term lubrication unit KIT.KWVE35-B-400 (3) Sealing strips KIT.KWVE35-B-910 (4) Additional wiper, double lip, KIT.KWVE35-B-370

> Figure 10 Ordering example, ordering designation

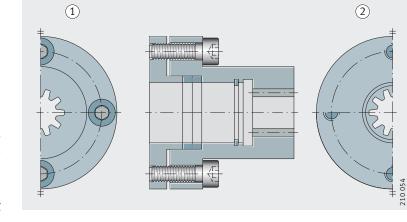

Accessories


Unit with	two	guideway	/ sets
		Atter	ntion!


In order to clearly define the KIT components, the carriage is always shown viewed with the locating face upwards. In the example, the guideway set 2 is rotated for definition by 180°. The KIT structure is always described from left to right.


Four-row linear recirculating ball bearing and guideway assembly KUVE with KIT components	Four-row linear ball bearing and guideway assembly Size Carriage type, full complement Number of guideway sets Number of carriages per unit Accuracy class Preload class Guideway length a_L a_R	KUVE 25 B 2 W2 G2 V1 2 500 mm 20 mm 20 mm
	Additional wiper, single lip, end plate (facing outward in each case)	KIT.KWVE25-B-319
	Sealing strips, lower	KIT.KWVE25-B-900
	Additional wiper, single lip, (facing inward in each case)	KIT.KWVE25-B-309
	Designation of KIT components, soo Figure 11	

Designation of KIT components: see *Figure 11*.


Accessories

Gearbox	The high performance worm gearboxes are specially matched to the new generation of direct current servomotors. The light metal housings ensure optimum heat dissipation. The gearboxes run quietly and can be used in any position. Available ratios: see page 374. The tooth set has low backlash (backlash < 2) and can be adjusted.
Mounting position	Five machined surfaces with adequately dimensioned fixing and threaded holes ensure stress-free mounting in all positions. If the additional forces are to be fully utilised, the gearbox should be flange mounted to the largest locating surfaces.
	The most favourable mounting position for lubrication is achieved with a lateral or bottom-mounted worm shaft.
Attention!	With a top-mounted worm shaft, the drive power is reduced by approx. 10%.
Flank backlash	The flank backlash ist set to the smallest possible value at the manufacturing plant. If the backlash changes after a long period of operation, it can be corrected to the specified value by means of the eccentrically supported input shaft.
Lubrication	The gearboxes are filled with synthetic lubricant.
	The filling should be checked monthly and several times in the first weeks of operation.
Attention!	Under moderate load or with single shift operation, the lubricant should be changed between once and four times per year, with two or three shift operation it should be changed annually. See also the accessory "Electronically controlled lubricant dispenser" on page 388.

Coupling The couplings are premounted. The bore on the gearbox side has a backlash-free tooth hub profile for slide fitting – similar to DIN 5 480, *Figure 1*.

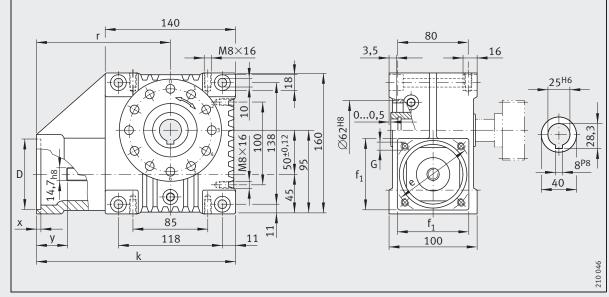
The bore on the motor side has annular spring elements as a clamping joint, *Figure 1*.

Before fixing on the motor shaft, all the contact surfaces must be cleaned and protected by means of a light oil film – to prevent fretting corrosion.

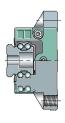
Gearbox side
 Motor side

Figure 1 Coupling

Drive shaft The drive shafts have helical teeth, 19°31'42", have a mesh angle of 20° and are case hardened. The teeth are ground to grade 6e25 – similar to DIN 3 962, DIN 3 963 and DIN 3 967. In order to prevent fretting corrosion, the drive shafts must be


In order to prevent fretting corrosion, the drive shafts must be cleaned and lightly greased or oiled before fitting.

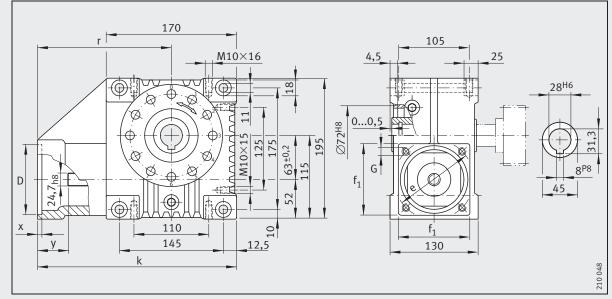
Axis centre distance $a_0 = 50 \text{ mm}$ Drive shaft with feather key joint or clamping joint¹⁾


Dimension table · Dimensions in mm						
Designation	Mass					
Drive shaft with	Drive shaft with					
Clamping joint	Feather key joint					
		≈kg				
GETR-50-SCHN-95/115-KL-i	GETR-50-SCHN-95/115-PF-i	7				
GETR-50-SCHN-50/95-KL-i	GETR-50-SCHN-50/95-PF-i	7				
GETR-50-SCHN-80/100-KL-i	GETR-50-SCHN-80/100-PF-i	7				
GETR-50-SCHN-95/115-KL-i	GETR-50-SCHN-95/115-PF-i	7				
GETR-50-SCHN-60/95-KL-i	GETR-50-SCHN-60/95-PF-i	7				
GETR-50-SCHN-95/130-KL-i	GETR-50-SCHN-95/130-PF-i	8				
GETR-50-SCHN-110/130-KL-i	GETR-50-SCHN-110/130-PF-i	8				

Possible ratios: i = 4,75; 6,75; 9,25; 14,5; 19,5; 29; 39; 50.

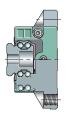
Gearbox – drive shaft with feather key joint

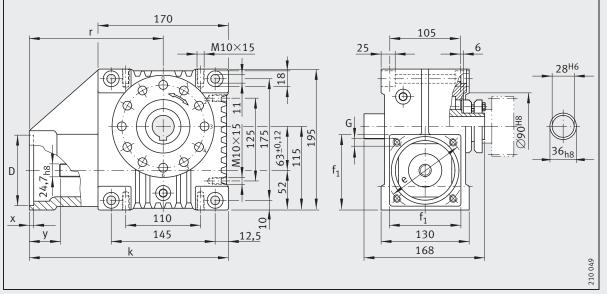
Dimensions	Dimensions											
е	G	D ^{G7}	х	у	k	r	f ₁					
115	M8	95	5	42	222	152	100					
95	M6	50	5	42	222	152	100					
100	M6	80	5	42	222	152	100					
115	M8	95	5	52	232	162	105					
75	M5	60	4	54	234	164	100					
130	M8	95	5	58	238	168	115					
130	M8	110	5	58	238	168	115					



Gearbox – drive shaft with clamping joint

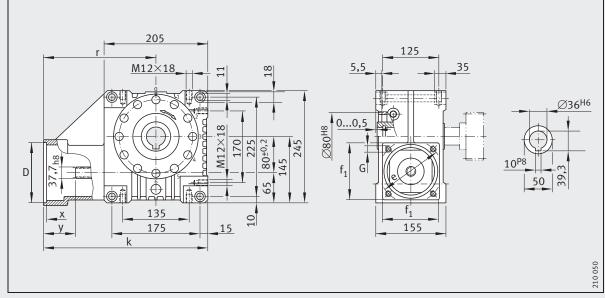
Axis centre distance $a_0 = 63 \text{ mm}$ Drive shaft with feather key joint or clamping joint¹⁾


$\textbf{Dimension table} \cdot \text{Dimensions in mm}$		
Designation	Mass	
Drive shaft with		m
Clamping joint	Feather key joint	≈kg
GETR-63-SCHN-95/115-KL-i	GETR-63-SCHN-95/115-PF-i	12
GETR-63-SCHN-110/165-KL-i	GETR-63-SCHN-110/165-PF-i	12,5
GETR-63-SCHN-130/165-KL-i	GETR-63-SCHN-130/165-PF-i	12,5
GETR-63-SCHN-95/130-KL-i	GETR-63-SCHN-95/130-PF-i	12
GETR-63-SCHN-110/130-KL-i	GETR-63-SCHN-110/130-PF-i	12
GETR-63-SCHN-110/130-KL-i	GETR-63-SCHN-110/130-PF-i	12,5
GETR-63-SCHN-130/165-KL-i	GETR-63-SCHN-130/165-PF-i	12,5
GETR-63-SCHN-130/215-KL-i	GETR-63-SCHN-130/215-PF-i	12


Possible ratios: i = 4,75; 6,75; 9,25; 14,5; 19,5; 29; 39; 50.

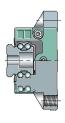
Gearbox – drive shaft with feather key joint

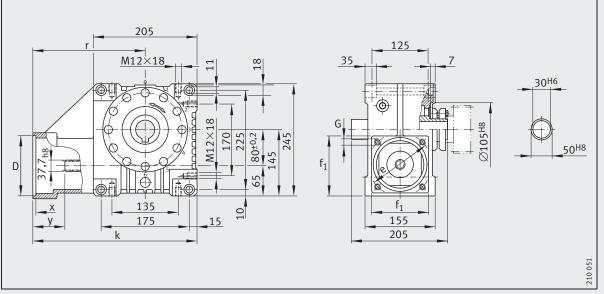
Dimensions	Dimensions											
е	G	D ^{G7}	х	у	r	f ₁	k					
115	M8	95	5	48	180	100	265					
165	M10	110	5	53	185	140	270					
165	M10	130	5	53	185	140	270					
130	M8	95	5	48	180	115	265					
130	M8	110	5	48	180	115	265					
130	M8	110	5	53	185	115	270					
165	M10	130	5	73	205	140	290					
215	M12	130	5	73	205	195	290					



Gearbox – drive shaft with clamping joint

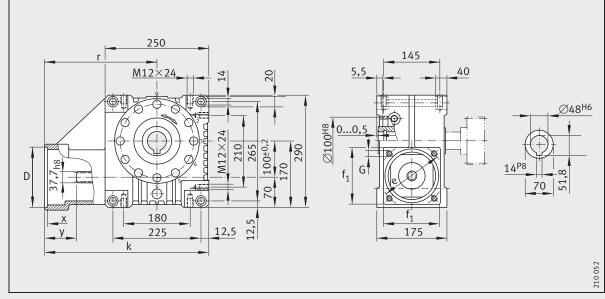
Axis centre distance $a_0 = 80 \text{ mm}$ Drive shaft with feather key joint or clamping joint¹⁾


Dimension table · Dimensions in mm							
Designation	Mass						
Drive shaft with		m					
Clamping joint	Feather key joint						
		≈kg					
GETR-80-SCHN-110/165-KL-i	GETR-80-SCHN-110/165-PF-i	23					
GETR-80-SCHN-180/215-KL-i	GETR-80-SCHN-180/215-PF-i	25					
GETR-80-SCHN-130/165 KL-i	GETR-80-SCHN-130/165-PF-i	23					
GETR-80-SCHN-130/165-KL-i	GETR-80-SCHN-130/165-PF-i	24					
GETR-80-SCHN-180/215-KL-i	GETR-80-SCHN-180/215-PF-i	30					
GETR-80-SCHN-180/215-KL-i	GETR-80-SCHN-180/215-PF-i	25					
GETR-80-SCHN-130/215-KL-i	GETR-80-SCHN-130/215-PF-i	25					


Possible ratios: i = 4,75; 6,75; 9,25; 14,5; 19,5; 29; 39; 50.

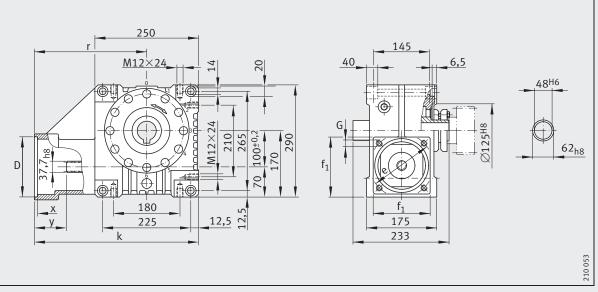
Gearbox – drive shaft with feather key joint

Dimensions										
е	G	D ^{G7}	Х	у	r	f ₁	k			
165	M10	110	5	55	230	140	332,5			
215	M12	180	5	85	260	193	362,5			
165	M10	130	5	55	230	140	332,5			
165	M10	130	5	75	250	155	352,5			
 215	M12	180	6	90	265	192	367,5			
215	M12	180	5	75	250	193	352,5			
215	M12	130	5	75	250	193	352,5			

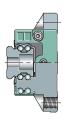


Gearbox – drive shaft with clamping joint

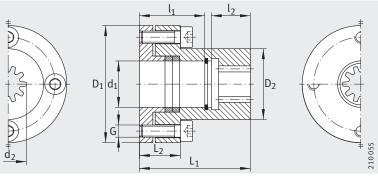
Axis centre distance $a_0 = 100 \text{ mm}$ Drive shaft with feather key joint or clamping joint¹⁾


Dimension table · Dimensions in mm								
Designation	Mass							
Drive shaft with	m							
Clamping joint	Feather key joint							
		≈kg						
GETR-100-SCHN-110/165-KL-i	GETR-100-SCHN-110/165-PF-i	30						
GETR-100-SCHN-130/165-KL-i	GETR-100-SCHN-130/165-PF-i	30						
GETR-100-SCHN-130/165-KL-i	GETR-100-SCHN-130/165-PF-i	31						
GETR-100-SCHN-180/215-KL-i	GETR-100-SCHN-180/215-PF-i	35						
GETR-100-SCHN-180/215-KL-i	GETR-100-SCHN-180/215-PF-i	33						
GETR-100-SCHN-130/215-KL-i	GETR-100-SCHN-130/215-PF-i	33						
	•	·						

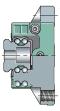
Possible ratios: i = 4,75; 6,75; 9,25; 14,5; 19,5; 29; 39; 50.



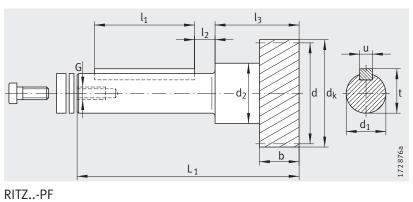
Gearbox - drive shaft with feather key joint


Dimensions										
е	G	D ^{G7}	х	У	r	f ₁	k			
 165	M10	110	5	55	240	140	365			
165	M10	130	5	55	240	140	365			
165	M10	130	5	75	260	140	385			
215	M12	180	6	90	275	192	400			
 215	M12	180	5	75	260	190	385			
215	M12	130	5	75	260	195	385			

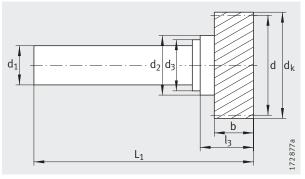
Gearbox – drive shaft with clamping joint


Coupling

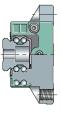
KUP to DIN 5 480


Dimension table · Dimensions in mm										
Designation	Mass	Jred	Dimension	S						
	m		d ₁	d ₂	D ₁	D ₂				
		-4								
	≈kg	$10^{-4} \text{ kg} \cdot \text{m}^2$								
KUP-6543110	0,4	0,835	10	15X1,25X10	48	29				
KUP-6543111	0,5	0,976	11	15X1,25X10	48	29				
KUP-6543114	0,45	0,835	14	15X1,25X10	48	29				
KUP-6543116	0,45	0,824	16	15X1,25X10	48	29				
KUP-6543119	0,4	0,799	19	15X1,25X10	48	29				
KUP-6543914	0,5	0,985	14	15X1,25X10	48	29				
KUP-6543916	0,4	0,975	16	15X1,25X10	48	29				
KUP-6543919	0,45	0,853	19	15X1,25X10	48	29				
KUP-6543924	0,52	1,041	24	15X1,25X10	50	29				
KUP-6544024	0,75	2,628	24	25X1,25X18	50	29				
KUP-6544114	0,5	1,645	14	25X1,25X18	55	32				
KUP-6544116	0,5	1,622	16	25X1,25X18	55	32				
KUP-6544119	0,5	1,598	19	25X1,25X18	55	32				
KUP-6544219	0,5	1,703	19	25X1,25X18	55	32				
KUP-6544919	0,55	1,757	19	25X1,25X18	55	32				
KUP-6544928	0,85	5,998	28	25X1,25X18	70	48				
KUP-6544932	0,8	5,921	32	25X1,25X18	70	48				
KUP-6544935	0,95	6,155	35	25X1,25X18	70	48				
KUP-6546024	0,9	4,452	24	38X1,25X29	55	-				
KUP-6546834	1,95	16,32	$1^{3}/8''$	38X1,25X29	80	58				
KUP-6546928	0,9	5,882	28	38X1,25X29	70	48				
KUP-6546932	0,85	5,784	32	38X1,25X29	70	48				
KUP-6546935	1,95	16,55	35	38X1,25X29	80	58				
KUP-6546938	1,88	16,24	38	38X1,25X29	80	58				
KUP-6547948	3,1	41,86	48	38X1,25X29	103	74				

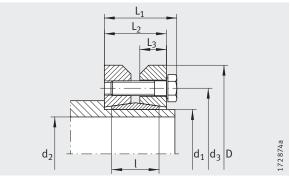
I ₁	I ₂	I ₃	I ₄	L ₁	L ₂	Fixing screws G	Tightening torque M _A
						Quantity and size	Nm
22	17	-	5	44	18	4XM5	7
20,5	17	-	5	64	18	4XM5	7
24	19	-	5	50	18	4XM5	7
27	16	-	5	50	18	4XM5	7
24	16	-	5	40	18	4XM5	7
26	19	-	5	64	18	4XM5	7
27	15	-	5	64,3	18,3	4XM5	7
23	17	-	5	55	18	4XM5	7
34	22	-	6	56	40	4XM6	10
41,5	24	-	6	66,5	59,5	4XM6	10
24	23,5	-	6	64	21	4XM6	10
34	23,5	-	6	64	21	4XM6	10
33	26,5	-	6	63	21	4XM6	10
27	26,5	-	6	74	21	4XM6	10
31	26,5	-	6	78	21	4XM6	10
48	26	-	6	83	25	5XM6	10
43	23	-	6	78	25	5XM6	10
52	26	-	6	78	25	5XM6	10
38,5	31	4	6	72,5	-	5XM6	10
63	34	-	6	100	40	6XM6	10
47	34	-	6	90	25	5XM6	10
43	34	-	6	86	25	5XM6	10
65	34	-	6	100	40	6XM6	10
62	34	-	6	100	40	6XM6	10
58	31	-	8	89	42	6XM8	25


Drive shaft

For feather key or clamping joint Helical teeth

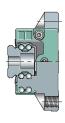

Feather key joint

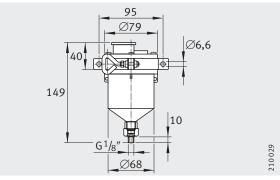
Dimension table · Dimensions in mm										
Designation	Mass	Axis centre	Modulus	Number	Dimensions					
	m	distance		of teeth	d	d _k	b	d ₁		
	≈kg							h6		
RITZ-023050-PF	1,25		2	30		67,7	25			
RITZ-023050-KL	1,25	50	2	50	63,66	07,7	25	25		
RITZ-022050-PF	1,33	50	3	20	05,00	69,7 30	30	23		
RITZ-032050-KL	1,75)	20			50			
RITZ-023063-PF	1,5		2	30		67,7	25			
RITZ-023063-KL	1,6	63	2				2.5	28		
RITZ-032063-PF	1,6	05	3	20	63,66	69,7	30	20		
RITZ-032063-KL	1,0		, ,	20 03,0	05,00	0,7	50			
RITZ-041563-PF	1,85	63	4	15		71,7	40	28		
RITZ-041563-KL	1,05	05	4	15		/ 1,/	40	20		
RITZ-032080-PF	2,4	80	3	20	63,66	69,7	30	36		
RITZ-0320 80-KL	2,4	00	5	20	09,00	09,7	50	50		
RITZ-041580-PF	2,5	80	4	15	63,66	71,7	40	36		
RITZ-041580-KL	2,5	00	4	1.7	03,00	/ 1,/	40	50		
RITZ-0415100-PF	3,9	100	4	15	63,66	71,7	7 40	48		
RITZ-0415100-KL	5,5	100	4	C1	00,00	/ 1,/	40	40		



RITZ..-KL Clamping joint

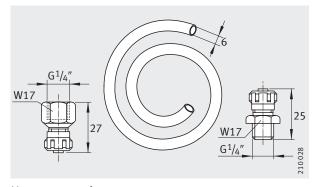
d ₂	d ₃	L ₁	I ₁	I ₂	l ₃	I ₄	u	t	G
	-	140	63	13	53	-	8	28	M8
38	31	148	-	-	34	28,5	-	-	-
00		142	63	13	55		8	28	M8
	-	150	-	-	36,5		-	-	-
	-	164,5	80	14,5	57,5	-	8	31	M8
	36	180	-	-	38,5	33	-	-	-
(2)	-	167	80	14,5	60	-	8	31	M8
42	36	183	-	-	41	33,5	-	-	-
		172	80	14,5	65		8	31	M8
	-	188	-	-	46		-	-	-
48		185	100	12,5	62		10	39	M12
40	-	208	-	-	37,5	_	-	-	-
4.0		190	100	12,5	67		10	39	M12
48	-	213	-	-	42,5		-	-	-
E 7		215	125	9	72		14	51,5	M12
57	-	240	-	-	43,5	_	-	-	-


Clamping joint


S	Ρ	F
		-

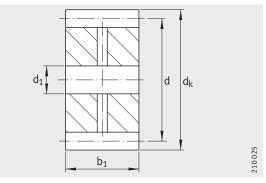
Dimension table · Dimensions in mm							
Designation	Mass	Axis centre distance	J _{red} Dimensions				
	m			d ₁	d ₂	d ₃	D
	≈kg		10^{-4} kg \cdot m ²				
SPE-8083030	0,3	50	1,756	30	25	44	60
SPE-8084036	0,4	63	4,029	36	28	52	72
SPE-8085050	0,8	80	11,322	50	36	70	90
SPE-8086062	1,3	100	27,137	62	48	86	110

		1		1	r
L ₁	L ₂	L ₃	1	Fixing screws G	Tightening torque M _A
				Quantity and size	Nm
25	21,5	9	16	7XM5	4
27,5	23,5	10	18	5XM6	12
31,5	27,5	12	22	8XM6	12
34,5	30,5	13	23	10XM6	12


Electronically controlled lubricant dispenser

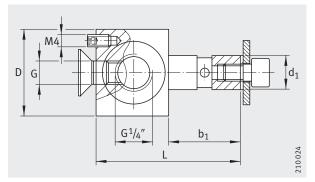
Volume 125 cm³

Ordering designation	
6591000	Ready-to-fit lubricant dispenser with Klüber special grease

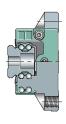

Hose connection set

Hose connection set, width across flats W = 17 mm

Ordering designation		
6591020	Hose connection set comprising; – 2 m plastic hose – aluminium screw connection with internal thread – aluminium screw connection with external thread	


Felted gear Locating pin

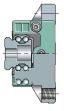
Felted gear Helical teeth on right side


Dimension table · Dimensions in mm					
Ordering designation		Mass	Modulus	Number of teeth	
Felted gear	Locating pin	m		Z	
		≈g			
RITZ-6591229	-	11	2	18	
-	RITZ-6591210	140	2	-	
RITZ-6591329	-	36	3	18	
-	RITZ-6591310	145	3	-	
RITZ-6591429	-	97	4	18	
-	RITZ-6591410	150	4	-	

Before the lubrication device is put into operation, the connecting hose between the felted gear and the lubrication device should be filled and the felted gear impregnated with grease, for example Klüber Microlub GB 0.

Locating pin

Dimensions						
d	d _k	d ₁	D	b ₁	L	G
38,2	42	12		25	_	
	42	12	30	25	50	
57,3	63	12	-	30		-
, , ,	05	12	30	30	55	
76,5	84	12	-	40	_	-
	-	12	30	40	65	

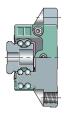


Gearbox with axis centre distance $a_0 = 50 \text{ mm}$

Dimension table · Dimensions in mm					
Ordering designation			Motor shaft		
Clamping joint	Feather key joint	Coupling	Diameter	Length	
GETR-50-SCHN-80/100-KL-i	GETR-50-SCHN-80/100-PF-i	KUP-6543110	10	32	
GETR-50-SCHN-60/75-KL-i	GETR-50-SCHN-60/75-PF-i	KUP-6543111	11	23	
GETR-50-SCHN-50/95-KL-i	GETR-50-SCHN-50/95-PF-i	KUP-6543114	14	30	
GETR-50-SCHN-60/75-KL-i	GETR-50-SCHN-60/75-PF-i	KUP-6443914	14	30	
GETR-50-SCHN-80/100-KL-i	GETR-50-SCHN-80/100-PF-i	KUP-6543114	14	30	
GETR-50-SCHN-95/115-KL-i	GETR-50-SCHN-95/115-PF-i	KUP-6543114	14	30	
GETR-50-SCHN-60/75-KL-i	GETR-50-SCHN-60/75-PF-i	KUP-6543116	16	40	
GETR-50-SCHN-95/115-KL-i	GETR-50-SCHN-95/115-PF-i	KUP-6543116	16	40	
GETR-50-SCHN-95/115-KL-i	GETR-50-SCHN-95/115-PF-i	KUP-6543119	19	40	
GETR-50-SCHN-95/115-KL-i	GETR-50-SCHN-95/115-PF-i	KUP-6543119	19	50	
GETR-50-SCHN-95/130-KL-i	GETR-50-SCHN-95/130-PF-i	KUP-6543919	19	40	
GETR-50-SCHN-110/130-KL-i	GETR-50-SCHN-110/130-PF-i	KUP-6543919	19	50	
GETR-50-SCHN-110/130-KL-i	GETR-50-SCHN-110/130-PF-i	KUP-6543924	24	50	

Gearbox with axis centre distance $a_0 = 63 \text{ mm}$

Dimension table · Dimensions in mm					
Ordering designation			Motor shaft		
Clamping joint	Feather key joint	Coupling	Diameter	Length	
GETR-63-SCHN-95/115 KL-i	GETR-63-SCHN-95/115-PF-i	KUP-6544114	14	30	
GETR-63-SCHN-95/165 KL-i	GETR-63-SCHN-95/165-PF-i	KUP-6544114	14	30	
GETR-63-SCHN-95/115 KL-i	GETR-63-SCHN-95/115-PF-i	KUP-6544116	16	40	
GETR-63-SCHN-130/165 KL-i	GETR-63-SCHN-130/165-PF-i	KUP-6444219	19	28	
GETR-63-SCHN-95/115 KL-i	GETR-63-SCHN-95/115-PF-i	KUP-6544119	19	40	
GETR-63-SCHN-95/130 KL-i	GETR-63-SCHN-95/130-PF-i	KUP-6544119	19	40	
GETR-63-SCHN-110/130 KL-i	GETR-63-SCHN-110/130-PF-i	KUP-6544119	19	40	
GETR-63-SCHN-130/215 KL-i	GETR-63-SCHN-130/215-PF-i	KUP-6544919	19	40	
GETR-63-SCHN-110/130 KL-i	GETR-63-SCHN-110/130-PF-i	KUP-6544024	24	50	
GETR-63-SCHN-110/165 KL-i	GETR-63-SCHN-110/165-PF-i	KUP-6544024	24	50	
GETR-63-SCHN-130/165 KL-i	GETR-63-SCHN-130/165-PF-i	KUP-6544024	24	50	
GETR-63-SCHN-110/130 KL-i	GETR-63-SCHN-110/130-PF-i	KUP-6544028	28	40	
GETR-63-SCHN-130/165 KL-i	GETR-63-SCHN-130/165-PF-i	KUP-6544932	32	58	
GETR-63-SCHN-130/215 KL-i	GETR-63-SCHN-130/215-PF-i	KUP-6544932	32	58 - 60	



Gearbox with axis centre distance $a_0 = 80 \text{ mm}$

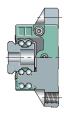
Dimension table · Dimensions in mm					
Ordering designation					
Clamping joint	Feather key joint	Coupling	Diameter	Length	
GETR-80-SCHN-110/165-KL-i	GETR-80-SCHN-110/165-PF-i	KUP-6546024	24	50	
GETR-80-SCHN-130/165-KL-i	GETR-80-SCHN-130/165-PF-i	KUP-6546024	24	50	
GETR-80-SCHN-180/215-KL-i	GETR-80-SCHN-180/215-PF-i	KUP-6546928	28	42	
GETR-80-SCHN-180/125-KL-i	GETR-80-SCHN-180/125-PF-i	KUP-6546928	28	60	
GETR-80-SCHN-130/165-KL-i	GETR-80-SCHN-130/165-PF-i	KUP-6546932	32	50	
GETR-80-SCHN-130/215-KL-i	GETR-80-SCHN-130/215-PF-i	KUP-6546932	32	58 - 60	
GETR-80-SCHN-180/215-KL-i	GETR-80-SCHN-180/215-PF-i	KUP-6546932	32	58 - 60	
GETR-80-SCHN-180/215-KL-i	GETR-80-SCHN-180/215-PF-i	KUP-6546938	38	80 - 85	
GETR-80-SCHN-180/215-KL-i	GETR-80-SCHN-180/215-PF-i	KUP-6547948	48	58	

Gearbox with axis centre distance $a_0 = 100 \text{ mm}$

Dimension table · Dimensions in mm						
Ordering designation			Motor shaft	Motor shaft		
Clamping joint	Feather key joint	Coupling	Diameter	Length		
GETR-100-SCHN-110/165-KL-i	GETR-100-SCHN-110/165-PF-i	KUP-6546024	24	50		
GETR-100-SCHN-130/165-KL-i	GETR-100-SCHN-130/165-PF-i	KUP-6546024	24	50		
GETR-100-SCHN-180/215-KL-i	GETR-100-SCHN-180/215-PF-i	KUP-6546928	28	42		
GETR-100-SCHN-130/165-KL-i	GETR-100-SCHN-130/165-PF-i	KUP-6546928	28	60		
GETR-100-SCHN-130/165-KL-i	GETR-100-SCHN-130/165-PF-i	KUP-6546932	32	50		
GETR-100-SCHN-130/165-KL-i	GETR-100-SCHN-130/165-PF-i	KUP-6546932	32	58		
GETR-100-SCHN-130/215-KL-i	GETR-100-SCHN-130/215-PF-i	KUP-6546932	32	58 - 60		
GETR-100-SCHN-180/215-KL-i	GETR-100-SCHN-180/215-PF-i	KUP-6546932	32	58 - 60		
GETR-100-SCHN-180/215-KL-i	GETR-100-SCHN-180/215-PF-i	KUP-6546938	38	80 - 85		
GETR-100-SCHN-180/215-KL-i	GETR-100-SCHN-180/215-PF-i	KUP-6547948	48	58		

Gearbox load table with allocation of gearbox ratio

Gearbox with axis centre distance $a_0 = 50 \text{ mm}$


Gearbox load								
Axis centre distance	Ratio	Maximum static torque against tooth fracture	Drive power P_1 and static torque T_2 against tooth fracture at a drive power of					
a ₀	i	T _{2 max}	500 min ⁻¹		750 min ⁻¹		1000 min ⁻¹	
			P ₁	T ₂	P ₁	T ₂	P ₁	T ₂
mm		Nm	kW	Nm	kW	Nm	kW	Nm
50	4,75	550	0,81	65	1,2	65	1,7	70
	6,75	400	0,5	56	0,77	59	1,1	63
	9,25	275	0,32	48	0,5	51	0,7	54
	14,5	350	0,26	57	0,4	60	0,57	65
	19,5	250	0,16	45	0,25	48	0,34	50
	29	300	0,14	48	0,2	52	0,29	55
	39	200	0,12	53	0,17	56	0,24	60
	50	150	0,08	42	0,12	44	0,16	47

Maximum permisible torque	for toothed guideway	vs 7HD and 7HST+SVS	see nage 302
Maximum permisible lorque	ioi looliieu guluewa	VS 205 allu 203173V3	, See page 502

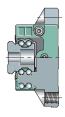
Pinion hardened Number of teeth ¹⁾	Modulus	Pitch circle diameter	Teeth hardened Maximum torque		
Z	m		ZHP	ZHST+SVS	
		mm	Nm	Nm	
30	2	63,66	270	-	
20	3	63,66	505	410	
15	4	63,66	-	670	

¹⁾ Other pinions available by agreement.

								Efficiency at 1 500 min ⁻¹
1500 min ⁻¹	1	3 000 min ⁻¹	l	4 000 min ⁻¹		5 000 min ⁻¹		
P ₁	T ₂	P ₁	T ₂	P ₁	T ₂	P ₁	T ₂	
kW	Nm	kW	Nm	kW	Nm	kW	Nm	
 2,52	70	5	70	6,2	65	7,3	61	0,92
 1,75	69	3,5	69	4,4	65	5,2	61	0,91
 1,1	58	2,55	70	3,55	70	4,1	65	0,89
 0,89	70	1,82	75	2,5	75	3,15	75	0,83
0,55	55	1,2	65	1,65	65	2,1	65	0,81
0,44	60	0,93	70	1,23	70	1,41	65	0,75
 0,37	65	0,77	75	1	75	1,25	75	0,7
0,25	50	0,51	60	0,72	60	0,9	60	0,64

Gearbox load table with allocation of gearbox ratio

Gearbox with axis centre distance $a_0 = 63 \text{ mm}$


Gearbox load								
Axis centre distance	Ratio	Maximum static torque against tooth fracture		Drive power P_1 and static torque T_2 against tooth fracture at a drive power of				
a ₀	i	T _{2 max}	500 min ⁻	-1	750 min ⁻	1	1 000 min	-1
			P ₁	T ₂	P ₁	T ₂	P ₁	T ₂
mm		Nm	kW	Nm	kW	Nm	kW	Nm
63	4,75	1 000	2,1	170	3,3	180	4,4	180
	6,75	750	1,5	170	2,35	180	3,1	180
	9,25	500	0,74	115	1,18	125	1,63	130
	14,5	600	0,74	165	1,19	180	1,54	180
	19,5	500	0,39	115	0,61	125	0,85	130
	29	650	0,48	175	0,75	190	1,04	205
	39	450	0,3	140	0,44	150	0,61	160
	50	300	0,16	95	0,25	105	0,35	115

Maximum permisible torque for toothed guideways ZHP and ZHST+SVS, see page 302
Maximum permisible lorque for loolned guideways 2nr and 2ns r 3vs, see page 302

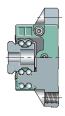
Pinion hardened Number of teeth ¹⁾	Modulus	Pitch circle diameter	Teeth hardened Maximum torque	
z	m		ZHP	ZHST+SVS
		mm	Nm	Nm
30	2	63,66	270	-
20	3	63,66	505	410
15	4	63,66	-	670

¹⁾ Other pinions available by agreement.

						Efficiency at 1 500 min ⁻¹
1 500 min ⁻¹		3 000 min ⁻	1	4 000 min ⁻²	1	
P ₁	T ₂	P ₁	T ₂	P ₁	T ₂	
kW	Nm	kW	Nm	kW	Nm	
6,11	170	10,3	145	13,2	135	0,92
4,25	170	7,2	145	9,3	135	0,91
2,52	135	4,93	135	6,35	126	0,9
2,45	180	4,18	170	5,25	160	0,84
1,28	135	2,98	165	3,83	155	0,83
1,55	220	2,57	195	3,22	185	0,77
0,97	175	1,88	190	2,55	190	0,73
0,55	125	1,2	150	1,63	160	0,68

Gearbox load table with allocation of gearbox ratio

Gearbox with axis centre distance $a_0 = 80 \text{ mm}$


Gearbox load							
Axis centre distance	Ratio	Maximum static torque against tooth fracture		Drive power P_1 and static torque T_2 against tooth fracture at a drive power of			
a ₀	i	T _{2 max}	500 min ⁻¹	l	750 min ⁻¹		
			P ₁	T ₂	P ₁	T ₂	_
mm		Nm	kW	Nm	kW	Nm	
80	4,75	2 000	5,2	420	6,9	380	
	6,75	1 400	3,6	420	4,86	380	
	9,25	1 100	2,38	370	3,53	370	
	14,5	1 300	1,98	450	2,9	450	
	19,5	1 000	1,24	370	2	400	
	29	1 200	1,38	520	2,04	550	
	39	850	0,87	430	1,35	460	
	50	600	0,38	240	0,57	260	

Merimum permisible terror for testhed muideways 700 and 7057 (SVC assesses 202	
Maximum permisible torque for toothed guideways ZHP and ZHST+SVS, see page 302	

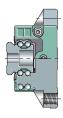
Pinion hardened Number of teeth ¹⁾	Modulus	Pitch circle diameter	Teeth hardened Maximum torque	
Z	m		ZHP	ZHST+SVS
		mm	Nm	Nm
30	2	63,66	270	-
20	3	63,66	505	410
15	4	63,66	-	670

¹⁾ Other pinions available by agreement.

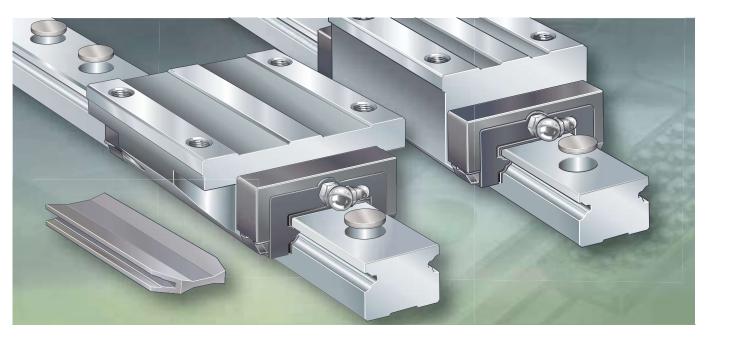
						Efficiency at 1 500 min ⁻¹
1 000 min ⁻¹		1 500 min ⁻	1	3 000 min ⁻	1	
P ₁	T ₂	P ₁	T ₂	P ₁	T ₂	
kW	Nm	kW	Nm	kW	Nm	
8,53	360	11,6	330	19,5	280	0,94
6,14	360	8,44	330	14,01	280	0,91
4,53	360	6,22	330	10,3	280	0,9
3,57	420	4,6	370	7	295	0,87
2,6	400	3,6	380	5,73	320	0,86
2,52	530	3,32	490	5,42	420	0,8
1,85	490	2,51	480	4,03	410	0,77
0,8	275	1,22	300	2,46	330	0,74

Gearbox load table with allocation of gearbox ratio

Gearbox with axis centre distance $a_0 = 100 \text{ mm}$

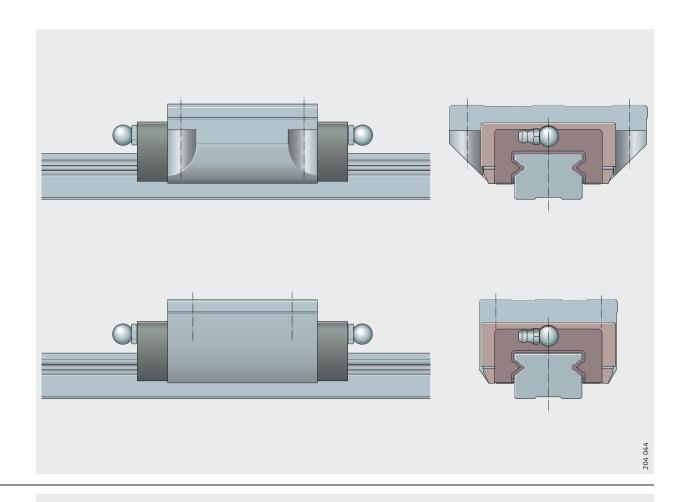

Gearbox load							
Axis centre distance	Ratio	Maximum static torque against tooth fracture		Drive power P_1 and static torque T_2 against tooth fracture at a drive power of			
a ₀	i	T _{2 max}	500 min ⁻¹		750 min ⁻¹		
			P ₁	T ₂	P ₁	T ₂	
mm		Nm	kW	Nm	kW	Nm	
100	4,75	3 300	10,77	880	14,22	800	
	6,75	2 300	7,23	830	9,6	750	
	9,25	1 900	5,34	830	7,1	750	
	14,5	2 0 5 0	4,2	930	5,8	880	
	19,5	1 800	3,02	900	4,27	870	
	29	2 300	2,96	1 1 5 0	4,02	1 070	
	39	1 650	2,07	1 080	2,88	1 0 3 0	
	52	1 100	1,16	760	1,82	820	

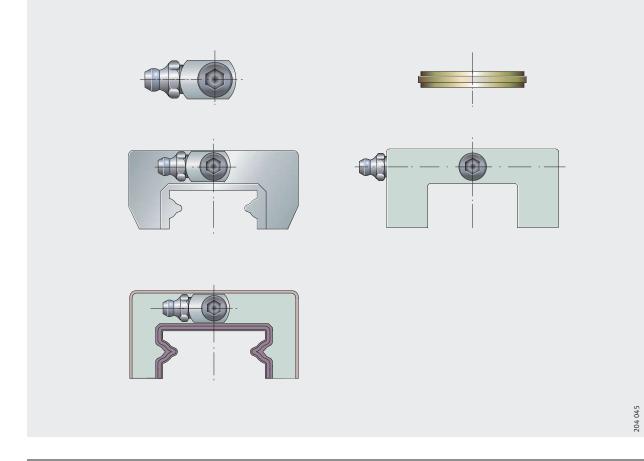
Maximum permisible torque for toothed guideways ZHP and ZHST+SVS, see page 30	2
VIAXIIIIUIII DEIIIIISIDIE IDIUUE IDI IDULIIEU ZUIUEWAVS ZAF AIIU ZASITSVS. SEE DARE SU	2

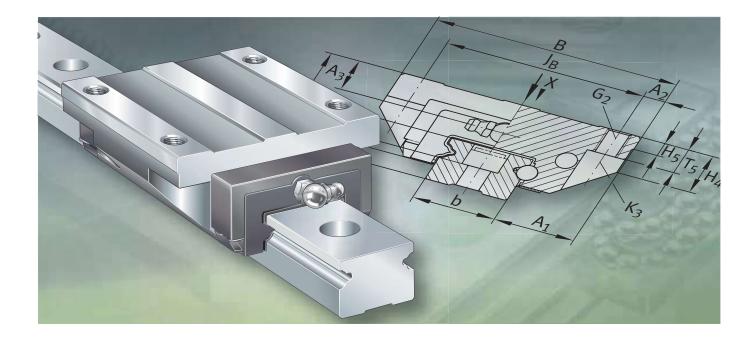

Pinion hardened Number of teeth ¹⁾	Modulus	Pitch circle diameter	Teeth hardened Maximum torque	
Z	m		ZHP	ZHST+SVS
		mm	Nm	Nm
30	2	63,66	270	-
20	3	63,66	505	410
15	4	63,66	-	670

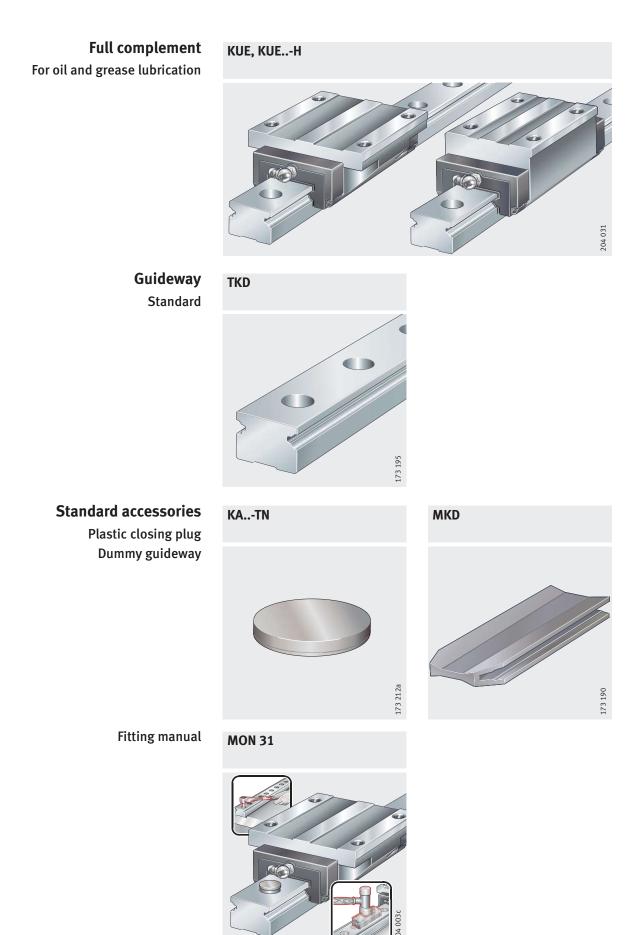
¹⁾ $\overline{\text{Other pinions available by agreement.}}$


						Efficiency at 1 500 min ⁻¹
1 000 min ⁻¹		1 500 min ⁻	1	3 000 min ⁻	1	
P ₁	T ₂	P ₁	T ₂	P ₁	T ₂	
kW	Nm	kW	Nm	kW	Nm	
17,77	750	24,1	685	40,37	580	0,94
12	720	16,7	660	29	580	0,92
9,1	720	12,3	660	21,2	580	0,91
6,8	810	9	720	14,3	620	0,87
5,2	810	6,67	720	11,1	620	0,87
4,67	1010	5,97	850	10,31	800	0,77
3,63	1 000	4,53	900	7,48	780	0,8
2,41	850	3,08	785	5	680	0,77






Full complement Accessories


Full complement

Product overview Two-row linear recirculating ball bearing and guideway assemblies 410 Features Load carrying capacity...... 411 Acceleration and speed 411 Carriages...... 412 Guideways 412 Sealing...... 412 Operating temperature 413 Standard accessories 413 Corrosion-resistant designs...... 413 **Design and** Preload 414 safety guidelines Friction 414 Demands on the adjacent construction 416 Accuracy Accuracy classes 419 Positional and length tolerances of guideways 421 Ordering example, Carriage, guideway with symmetrical hole pattern 422 ordering designation Guideway with asymmetrical hole pattern 422 **Dimension tables** Linear recirculating ball bearing and guideway assemblies, standard carriages 424 Linear recirculating ball bearing and guideway assemblies, H carriages 428

Page

Product overview Two-row linear recirculating ball bearing and guideway assemblies

Features Linear recirculating ball bearing and guideway assemblies KUE are preloaded. They are used in applications with long unrestricted strokes, moderate loads, low rigidity and low friction.

A guidance system comprises at least one carriage with a full complement rolling element system, a guideway and plastic closing plugs.

The units can be ordered separately as carriage KWE and guideway TKD or as a unit KUE. In a unit, one or more carriages are mounted on each guideway.

Load carrying capacity These linear recirculating ball bearing and guideway assemblies have two rows of balls at a contact angle of 45° to the raceways. They can support forces from all directions – apart from the direction of motion – and moments about all axes, *Figure 1*.

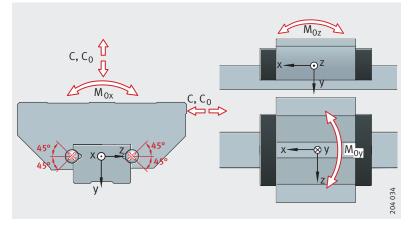
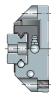
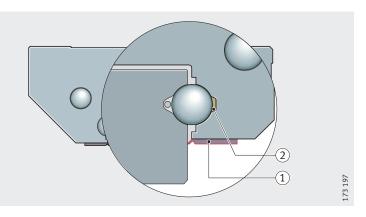



Figure 1 Load carrying capacity and contact angle

Acceleration and speed Operating limits

The dynamic values are shown in the table.

0	Acceleration up to m/s ²	Speed up to m/s
KUE (-H)	150	180



- **Carriages** The carriages have saddle plates made from hardened steel and ground on all sides, the rolling element raceways are precision ground. The balls are recirculated in enclosed channels with plastic return elements. In order to increase the grease volume, the carriages have lubricant reservoirs.
- **Guideways** The guideways are made from hardened steel and are ground on all faces, the rolling element raceways are precision ground.

Located from above Guideways TKD are located from above. The through holes have counterbores for the fixing screws.

- **Multi-piece guideways** If the required guideway length l_{max} is greater than the value in the dimension tables, the guideways are supplied in several pieces; see page 416.
 - **Sealing** Standard sealing strips and elastic wipers on the end faces ensure effective sealing of the carriages, *Figure 2*. These sealing elements protect the rolling element system from contamination even under demanding environmental conditions.
 - For additional sealing variants see Accessories, pages 436 to 438. **Attention!** If the contamination conditions are exceptionally severe,
 - please contact us.
 - **Lubrication** The linear recirculating ball bearing and guideway assemblies are suitable for oil and grease lubrication. If grease lubrication is used, they are maintenance-free for most applications due to the lubricant reservoir, *Figure 2*.

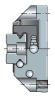
Lubrication is carried out via the lubrication nipple in the end face of the end piece.

Standard sealing strips
 Lubricant reservoir

Figure 2 Sealing strips and lubricant reservoir

Operating temperature	Linear recirculating ball bearing and guideway assemblies KUE can be used at operating temperatures from –10 °C to +100 °C.				
Standard accessories Plastic dummy guideway	The dummy guideway prevents damage to the rolling element set if the carriage is removed from the guideway. Carriages are always pushed directly from the guideway onto the dummy guideway and must remain there until they are reassembled.				
Plastic closing plugs	The closing plugs close off the counterbores of the guideway holes flush with the surface of the guideway. Optionally, brass closing plugs are also available, see Accessories page 435.				
Corrosion-resistant designs	Linear recirculating ball bearing and guideway assemblies KUE are also available in corrosion-resistant designs with the special coatings Corrotect [®] , Protect A and Protect B.				
Suffixes for Corrotect [®] -coated parts	With Corrotect [®] coating	Preassembled unit Guideway only coated	Carriage and guideway separate Carriage or guideway coated	Preassembled unit Carriage and guideway coated	

With Corrotect [®] coating	Preassembled unit Guideway only coated	Carriage and guideway separate Carriage or guideway coated	Preassembled unit Carriage and guideway coated
	204 036		204 036
Suffix	RRFT	RRF	RRF


For applications with $\mathsf{Corrotect}^{\textcircled{R}}$, please contact us.

Suffixes for available designs: see table.

Suffixes

Available designs

Suffix	Description
-	Standard carriage
L	Long carriage
Н	High carriage

Design and safety guidelines Preload

Linear recirculating ball bearing and guideway assemblies KUE are available in preload classes VO and V1, see table Preload classes.

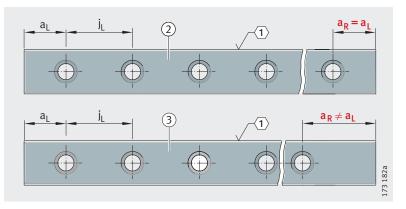
Preload classes

Preload class	Preload setting	Suitable applications	
VO	Very small clearance to clearance-free	Particularly smooth running Moment load	
V1	Clearance-free	Moderate load High rigidity requirements Moment load	

Influence of preload on the linear guidance system

Increasing the preload increases the rigidity. However, preload also influences the displacement resistance and operating life of the linear guidance system.

Friction The coefficient of friction is dependent on the ratio C/P, see table.


Coefficient of friction

Load C/P	Coefficient of friction ^{IJ} KUE
4 to 20	0,002 to 0,004

Guideway hole patterns

Unless specified otherwise, the guideways have a symmetrical hole pattern, *Figure 3*.

At customer request, an asymmetrical hole pattern is also possible. In this case, $a_L \ge a_{L \min}$ and $a_R \ge a_{R \min}$, Figure 3.

(1) Locating face
 (2) Symmetrical hole pattern
 (3) Asymmetrical hole pattern

Figure 3

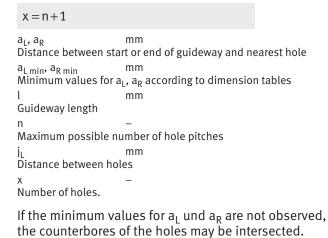
Attention!

Hole patterns of guideways with one row of holes

Maximum number of pitches between holes

The number of pitches between holes is the rounded whole number equivalent to:

$$n = \frac{l - 2 \cdot a_{L \min}}{j_{I}}$$


The distances a_L and a_R are generally determined by:

 $a_L + a_R = l - n \cdot j_L$

For guideways with a symmetrical hole pattern:

$$a_{L} = a_{R} = \frac{1}{2} \cdot \left(l - n \cdot j_{L} \right)$$

Number of holes:

Multi-piece guideways

If the guideway length required is greater than l_{max} according to the dimension tables, these guideways are made up from individual pieces that together comprise the total required length. The individual pieces are matched to each other and marked, Figure 4.

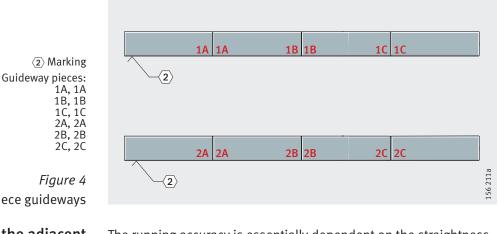


Figure 4 Marking of multi-piece guideways

Demands on the adjacent construction

Geometrical

Attention!

and positional accuracy

of the mounting surfaces

The running accuracy is essentially dependent on the straightness, accuracy and rigidity of the fit and mounting surfaces.

The straightness of the system is only achieved when the guideway is pressed against the datum surface.

If high demands are to be made on the running accuracy and/or if soft substructures and/or movable guideways are used, please contact us.

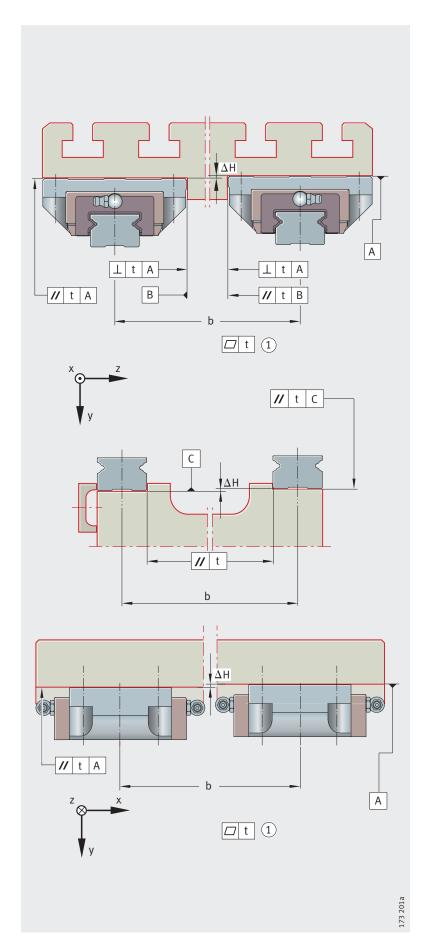
The higher the requirements for accuracy and smooth running of the guidance system, the more attention must be paid to the geometrical and positional accuracy of the mounting surfaces.

The tolerances according to *Figure 5*, page 417 and table Values for parallelism tolerances t, page 418 must be observed.

Surfaces should be ground or precision milled – with the aim of achieving a mean roughness value R_a 1,6.

Any deviations from the stated tolerances will impair the overall accuracy, alter the preload and reduce the operating life of the guidance system.

Height difference ΔH For ΔH , permissible values are in accordance with the following formula. If larger deviations are present, please contact us.


μm

$\Delta_{\mathsf{H}} = 0, 2 \cdot \mathsf{b}$

 ΔH

Maximum permissible deviation from the theoretically precise position, *Figure 5*, page 417 b mm

Centre distance between guidance elements.

1 Not convex (for all machined surfaces)

Figure 5

Tolerances of mounting surfaces and parallelism of mounted guideways

Parallelism of mounted guideways

For guideways arranged in parallel, the parallelism t should be in accordance with *Figure 5*, page 417 and table. If the maximum values are used, the displacement resistance may increase. If larger tolerances are present, please contact us.

Values for parallelism tolerances t

Guideway	Preload class			
Designation	VO	V1		
	Parallelism tolerance			
	t	t		
	μm	μm		
TKD15	13	10		
TKD20	18	12		
TKD25	22	14		
TKD30	26	17		
TKD35	30	20		

Locating heights and corner radii

Locating heights, corner radii

The locating heights and corner radii should be designed in accordance with table and *Figure 6*.

Two-row linear recircu- lating ball bearing and guideway assembly Designation	h ₁ mm	h ₂ max. mm	r ₁ max. mm	r ₂ max. mm
KUE15 (-H)	4,5	3,5	1	0,5
KUE20 (-H)	5	4	1	0,5
KUE25 (-H)	5	4,5	1	0,8
KUE30 (-H)	6	5	1	0,8
KUE35 (-H)	6,5	6	1	0,8

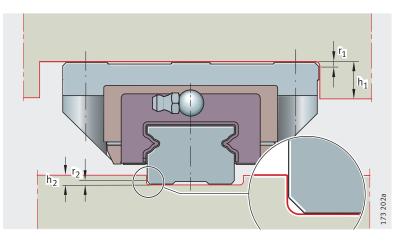
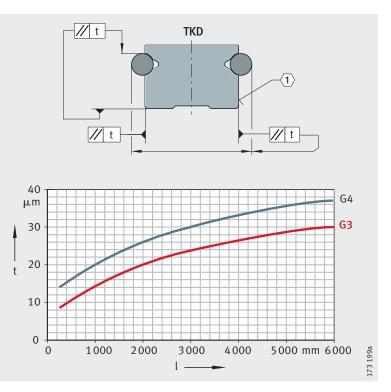



Figure 6 Locating heights and corner radii

Accuracy Accuracy classes

Two-row linear recirculating ball bearing and guideway assemblies are available in accuracy classes G3 and G4, *Figure 7*. The standard is class G3.

 $\label{eq:t} \begin{array}{l} t = parallelism tolerance\\ with differential measurement\\ l = total guideway length\\ \langle \tau \rangle \mbox{ Locating face} \end{array}$

Figure 7

Accuracy classes and parallelism tolerances of guideways

Parallelism of raceways to locating surfaces

The parallelism tolerances of guideways are shown in *Figure 7*. In systems with Corrotect[®] coating, there may be deviations in tolerances compared with uncoated units.

Tolerances

Tolerances: see table and *Figure 8*.

The tolerances are arithmetic mean values. They relate to the centre point of the screw mounting or locating surfaces of the carriage. The dimensions H and A_1 (table Tolerances of accuracy classes) should always remain within the tolerance irrespective of the position of the carriage on the guideway.

Tolerances of accuracy classes

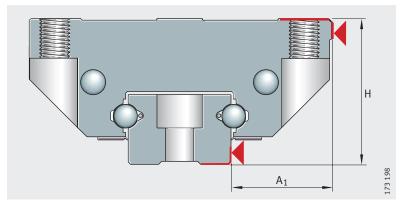
Tolerance		Accuracy		
		G3 ¹⁾	G4	
		μm	μm	
Tolerance for height	Н	±25	±80	
Height difference ²⁾	ΔH	15	20	
Tolerance for spacing	A ₁	±20	±80	
Spacing difference ²⁾	ΔA_1	22	30	

¹⁾ Standard accuracy class.

²⁾ Difference between several carriages on one guideway, measured at the same point on the guideway.

For these units, the values for the appropriate accuracy class must be increased by the values for RRF or RRFT; for values, see table.

Units with Corrotect[®] coating


Tolerances for coated parts

Tolerance		With Corrotect [®] coating		With Protect A coating	With Protect B coating
		RRF ¹⁾	RRFT ²⁾	KD	KDC
		μm	μm	μm	μm
Tolerance for height	Н	+6	+3	+6	+6
Height difference ³⁾	ΔH	+3	0	+3	+3
Tolerance for spacing	A ₁	+3	+3	+3	+3
Spacing difference ³⁾	ΔA_1	+3	0	+3	+3

¹⁾ Displacement in tolerance zone (guideway and carriage coated).

²⁾ Displacement in tolerance zone (guideway only coated).

³⁾ Difference between several carriages on one guideway, measured at the same point on the guideway.

Figure 8 Datum dimensions for accuracy

Positional and length tolerances of guideways

The positional and length tolerances are shown in *Figure 9* and table Length tolerances of guideways. The hole pattern corresponds to DIN ISO 1101.

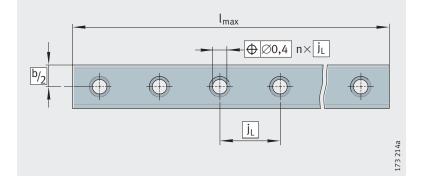
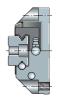


Figure 9 Positional and length tolerances of guideways

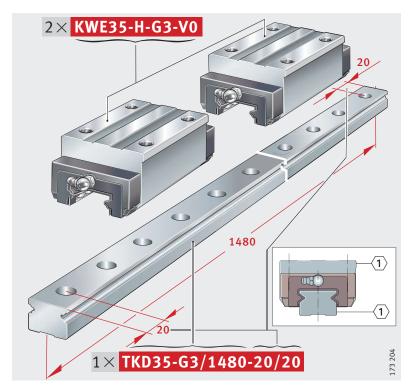
Length tolerances of guideways


Tolerances		
of guideway as a functio	r, n of length l _m	on multi-piece guideways
Guideway le mm	ength	mm
≦1000	>1 000 <3 000	
-1	-1,5	±3 over total length

¹⁾ Length l_{max} : see dimension tables.

Pieces of joined guideways

Guideway length ¹⁾ mm	Maximum permissible number of pieces
<3 000	2
3 000 - 4 000	3
4 000 - 6 000	4
>6000	4 + 1 piece per 1 500 mm

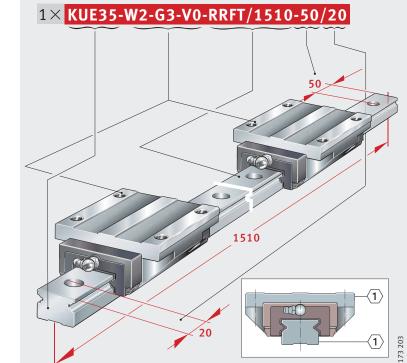

¹⁾ $\overline{\text{Minimum}}$ length of one piece = 600 mm.

Ordering example, ordering designation Carriage, guideway with symmetrical hole pattern Carriages	Two carriages for two-row linear ball bearing	
-	and guideway assembly	KWE
	Size	35
	Carriage type	H
	Accuracy class	G3
	Preload	V0
Ordering designation	2× KWE35-H-G3-V0 , <i>Figure 10</i>	
Guideway	One guideway for carriages	TKD
,	Size	35
	Accuracy class	G3
	Guideway length	1 480 mm
	aL	20 mm
	a _R	20 mm

Ordering designation

1×**TKD35-G3/1480-20/20**, Figure 10

 $\langle \underline{1} \rangle$ Locating face

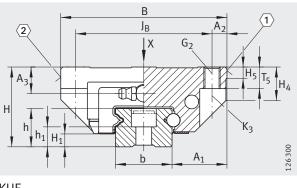

Figure 10 Ordering example, ordering designation

Guideway with asymmetrical hole pattern

One linear ball bearing and guideway assembly	
with two carriages per guideway	KUE
Size	35
Number of carriages per unit	W2
Accuracy class	G3
Preload	VO
Guideway with Corrotect [®] coating	RRFT
Guideway length	1 510 mm
aL	50 mm
a _R	20 mm

Ordering designation

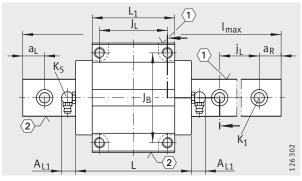
1×KUE35-W2-G3-V0-RRFT/1510-50/20, Figure 11



 $\langle\underline{1}\rangle$ Locating face

Figure 11 Ordering example, ordering designation

Standard carriages

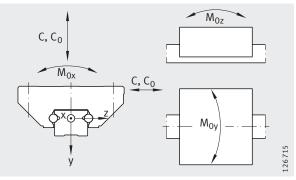

Dimension table · Dimensions in mm														
Designation	Dimensions				Mounti	Mounting dimensions								
	l _{max} 1)	l _{max} ¹⁾ H B L			A ₁	J _B	b	A ₂	L ₁	JL	jL	a_L, a_R^2	2)	A _{L1}
													1	
							-0,004 -0,05					min.	max.	
KUE15	1 200	24	47	54,5	16	38	15	4,5	38,7	30	60	20	53	1,5
KUE20	1 980	30	63	70,4	21,5	53	20	5	49,4	40	60	20	53	14
KUE25	1 980	36	70	80,5	23,5	57	23	6,5	56,5	45	60	20	53	14
KUE30	2 000	42	90	92,9	31	72	28	9	65,7	52	80	20	71	14
KUE35	2 960	48	100	106,1	33	82	34	9	75,4	62	80	20	71	14

For further table values, see page 426 and page 427.

¹⁾ Maximum length of single-piece guideways. For permissible number of guideway pieces, see page 421. Maximum single-piece guideway length of 6 m available by agreement.

 $^{2)}\,\,a_L$ and a_R are dependent on the guideway length.

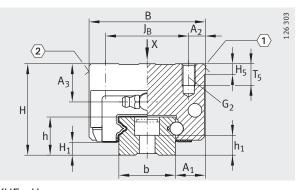
3) (1) Locating face (2) Marking



KUE \cdot View rotated 90° (1), (2) ³⁾

H ₁	H ₅	A ₃	H ₄	T ₅	h	h ₁	K ₅	G ₂		K ₁		K ₃	
								DIN ISO	4762-12	2.9			
									M _A Nm		M _A Nm		M _A Nm
4,8	4,5	4	7,5	7	15	8,2	NIP-A1	M5	5,8	M4	5	M4	5
5	5	6,5	11,6	10	16,5	8,8	NIP-KE-M6	M6	10	M5	10	M5	10
6,5	5	10	11,6	10	18	9,2	NIP-KE-M6	M8	24	M6	17	M6	17
7	6	13	14,6	10	21,5	10,5	NIP-KE-M6	M10	41	M8	41	M8	41
8	6,5	16	20,1	13	23	12	NIP-KE-M6	M10	41	M8	41	M8	41

Standard carriages

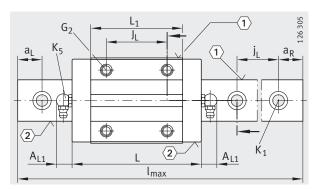

Load directions

Dimension table (continued) · Dimensions in mm								
Designation	Carriage		Guideway					
	Designation	Mass	Designation	Mass	Closing plug			
		m		m				
		≈kg		≈kg/m				
KUE15	KWE15	0,17	TKD15	1,5	KA08-TN			
KUE20	KWE20	0,45	TKD20	2,2	KA10-TN			
KUE25	KWE25	0,65	TKD25	2,8	KA11-TN			
KUE30	KWE30	1,2	TKD30	4,2	KA15-TN			
KUE35	KWE35	1,7	TKD35	5,6	KA15-TN			

Load carrying cap	Load carrying capacity									
Basic load rating	S	Moment rating	Moment ratings							
С	Co	M _{Ox}	M _{Oy}	M _{Oz}						
Ν	Ν	Nm	Nm	Nm						
6 500	9 200	73	56	56						
13 300	18 000	190	154	154						
16 200	20 900	253	185	185						
22 500	29 700	437	335	335						
6 500	9 200	73	56	56						

H carriages

 $\overset{\text{KUE..-H}}{\text{(1), (2)}}$

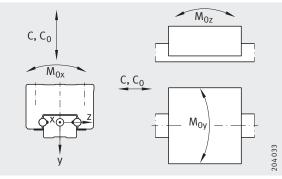

Dimension table · Dimensions in mm														
Designation Dimensions					Mounti	Mounting dimensions								
	l _{max} 1)	Н	В	L	A ₁	A_1 J_B b A_2 L_1 J_L j_l				jL	j_L $a_L, a_R^{2)}$		A _{L1}	
							-0,004 -0,05					min.	max.	
KUE15-H	1 200	28	34	54,5	9,5	26	15	4	38,7	26	60	20	53	1,5
KUE20-H	1 980	30	44	70,4	12	32	20	6	49,4	36	60	20	53	14
KUE25-H	1 980	40	48	80,5	12,5	35	23	6,5	56,5	35	60	20	53	14
KUE30-H	2 0 0 0	45	60	92,9	16	40	28	10	65,7	40	80	20	71	14
KUE35-H	2960	55	70	106,1	18	50	34	10	75,4	50	80	20	71	14

For further table values, see page 430 and page 431.

¹⁾ Maximum length of single-piece guideways. For permissible number of guideway pieces, see page 421. Maximum single-piece guideway length of 6 m available by agreement.

²⁾ a_L and a_R are dependent on the guideway length.

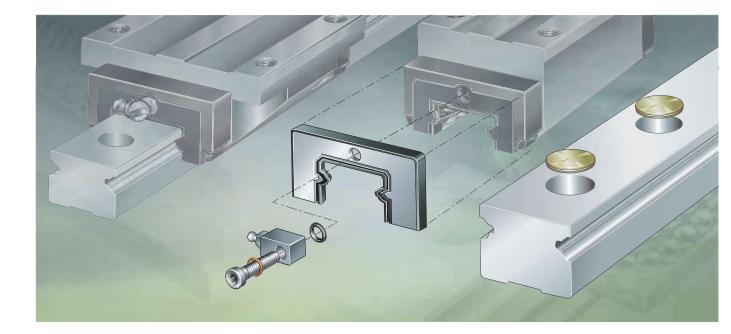
³⁾ Maximum screw depth.



KUE...-H · View rotated 90° (1), (2) ⁴⁾

		Fixing scr	ews							
H ₁	H ₅	A ₃	T ₅ ³⁾	h	h ₁	K ₅	G ₂		K ₁	
							DIN ISO 4	762-12.9		
								M _A Nm		M _A Nm
4,8	4,5	8	5	15	8,2	NIP-A1	M4	5	M4	5
5	5	6,5	5,5	16,5	8,8	NIP-KE-M6	M5	10	M5	10
6,5	5	14	8	18	9,2	NIP-KE-M6	M6	17	M6	17
7	6	16	10	21,5	10,5	NIP-KE-M6	M8	41	M8	41
8	6,5	23	12	23	12	NIP-KE-M6	M8	41	M8	41

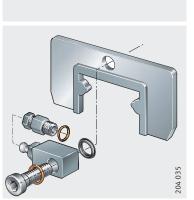
H carriages

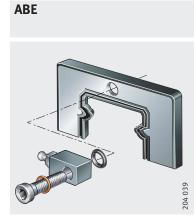

Load directions

Dimension table (continued) · Dimensions in mm									
Designation	Carriage		Guideway	Guideway					
	Designation	Mass	Designation	Mass	Closing plug				
		m		m					
		≈kg		≈kg/m					
KUE15-H	KWE15-H	0,17	TKD15	1,5	KA08-TN				
KUE20-H	KWE20-H	0,35	TKD20	2,2	KA10-TN				
KUE25-H	KWE25-H	0,55	TKD25	2,8	KA11-TN				
KUE30-H	KWE30-H	0,9	TKD30	4,2	KA15-TN				
KUE35-H	KWE35-H	1,46	TKD35	5,6	KA15-TN				

Load carrying cap	Load carrying capacity									
Basic load rating	S	Moment rating	gs							
С	Co	M _{Ox}	M _{Oy}	M _{0z}						
Ν	Ν	Nm	Nm	Nm						
6 500	9 200	73	56	56						
13 300	18 000	190	154	154						
16 200	20 900	253	185	185						
22 500	29 700	437	335	335						
28 000	37 000	658	450	450						

Accessories

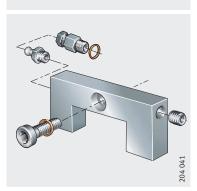

Closing plugs Sealing and lubrication elements


Product overview Accessories

Closing plug Brass closing plug

Lubrication and sealing elements Sheet steel wipers End wipers




Lubrication adapters for grease and oil lubrication

SMAD.KFE, SMAD.KOE

APLE

Lubrication adapter plate

Accessories

Brass closing plugs

Closing plugs are used to close off the counterbores for the fixing screws in the guideways. As a result, the surface of the guideway is completely flush.

Brass closing plugs KA..-M are particularly suitable for conditions involving hot swarf and aggressive media, *Figure 1*.

КА..-М

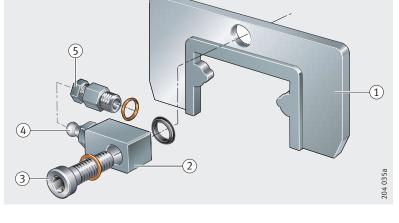
Figure 1 Brass closing plug

210 023a

Accessories

Sheet steel wipers

Sheet steel wipers APLE are screw mounted to the end faces of the carriage, *Figure 2*.


They protect the seal lips of the standard wipers against coarse contaminants and hot swarf. There is a narrow gap between the guideway and the wiper.

APLE

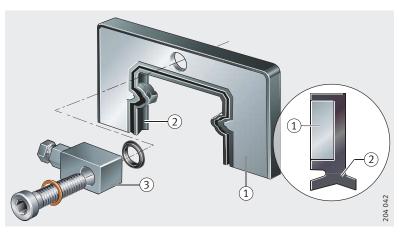
Sheet steel wiper
 Lubrication adapter
 Fixing screw
 Lubrication nipple
 Central lubrication connector

Figure 2 Sheet steel wipers

Complete fitting set

The wipers are supplied with the lubrication adapter SMAD.KFE and a fixing screw. This lubrication adapter can be replaced by the lubrication adapter SMAD.KOE; lubrication adapters: see page 443. Instead of the lubrication nipple, the adapter can be fitted with a central lubrication connector – with a thread DIN 13 M8×1. The sheet steel wiper APLE is not available for size KUE15.

Ordering example, ordering designation Ordering designation Two sheet steel wipers for a KUE25 are required.


 $2 \times \text{APLE25-FE}$

End wipers	The end wipers are available with double and single lip seals; single lip seals: see page 438. They are screw mounted to the end faces of the carriage and protect the components behind them as well as the rolling element system, <i>Figure 3</i> and <i>Figure 4</i> . It is thus possible in many cases to dispense with costly sealing measures on the adjacent construction.
	The seal carrier is an aluminium plate. The seal material is wear-resistant NBR plastic (nitrile rubber). In the single lip design, a seal lip variant with FPM (fluoro rubber) is also possible, see page 438.
Wipers with double lip seals	These wipers are particularly suitable for applications involving a high level of contamination and extend the operating life of the guidance system compared with the standard version even in heavily contaminated environments.
	They are suitable for fine dusts and most cooling lubricants. Furthermore, they can also be used for the design of maintenance

free bearing arrangements even in contaminated environments, since the double lip concept minimises the loss of lubricant.

With lubrication adapter

A lubrication adapter for grease (SMAD.KFE) or oil (SMAD.KOE) is supplied in accordance with the ordering data.

1 End wiper (2) Double lip seal ABE..-P2-NBR (3) Lubrication adapter

Figure 3 End wiper with double lip seal

> Ordering example, ordering designation Ordering designation

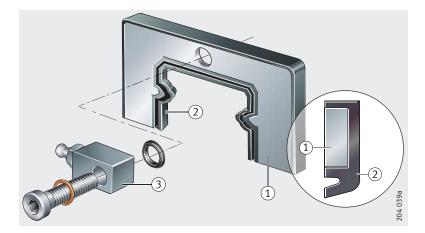
Two end wipers with double lip seals for a KUE35 with a central lubrication connector for oil.

2×ABE.KWE35-P2-NBR-OE

Accessories

Wipers with single lip seals

These wipers are available with the seal materials NBR for fine dust and most cooling lubricants and with FPM for particularly aggressive cooling lubricants or alkalis, *Figure 4*.


They are suitable for applications involving a high level of contamination and extend the operating life of the guidance system compared with the standard version even in contaminated environments.

The wipers are available from size KUSE25.

With lubrication adapter

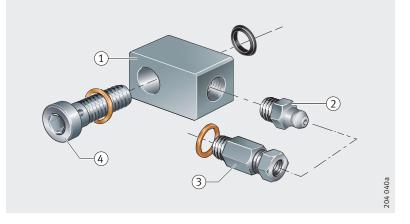
A lubrication adapter for grease (SMAD.KFE) or oil (SMAD.KOE) is supplied in accordance with the ordering data.

Attention! If wipers are to be retrofitted, please contact us first.

 End wiper
 Single lip seal ABE..-NBR or ABE..-FPM
 Lubrication adapter

Figure 4 End wiper with single lip seal

> Ordering example, ordering designation Ordering designation


Two end wipers with NBR single lip seals for a KUE35 with a lubrication nipple for grease.

2×ABE.KWE35-NBR-FE

Lubrication adapters for grease and oil lubrication

Lubrication adapters SMAD.KFE (for grease) or SMAD.KOE (for oil) are screwed into the end piece of the carriage instead of the lubrication nipple NIP-KG-M6, *Figure 5*.

The lubrication adapters are not available for series KUE15.

SMAD.KFE SMAD.KOE

(1) Lubrication adapter
 (2) Lubrication nipple
 (3) Central lubrication connector
 (4) Fixing screw

Figure 5 Lubrication adapters

Design of lubrication adapter

Lubrication adapters

The design of the adapter depends on the lubrication method, see table.

Adapter Designation	Lubrication method	Design
SMAD.KFE	Grease lubrication	With lubrication nipple
SMAD.KOE	Oil lubrication	With central lubrication connector

Fitting Attention!

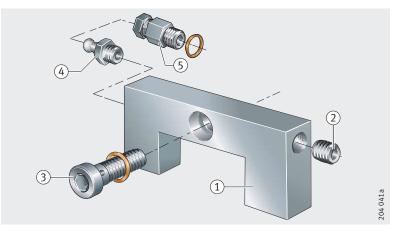
Ordering example, ordering designation Ordering designation The maximum tightening torque M_A for the fixing screw is 1,5 Nm. Lubrication adapters must not be subjected to moment loads.

One lubrication adapter for a KUE35 for oil lubrication.

1×**SMAD.KWE35-OE**

Accessories

Lubrication adapter plate


Lubrication adapter plates BPLE are screw mounted to the end piece of the carriage. They move the lubrication connector to the outer side of the carriage.

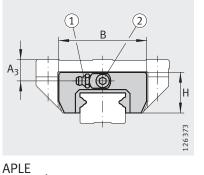
The adapter plates each comprise an aluminium body, a screw plug, a fixing screw with a sealing ring, a lubrication nipple to DIN 71412-A M8 \times 1 or a central lubrication connector with a sealing ring and thread to DIN 13 M8 \times 1.

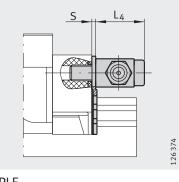
Attention! In all high carriages (-H), the lubrication nipple protrudes laterally approx. 9 mm from the carriage.

The unused hole in the adapter plate must be closed off using the screw plug.

The lubrication adapter plates are not available for series KUE15.

BPLE


Aluminium body
 Screw plug
 Fixing screw with sealing ring
 Lubrication nipple
 Central lubrication connector


Figure 6 Lubrication adapter plate

Ordering example, ordering designation Ordering designation One lubrication adapter plate for a KUE35 with a central lubrication connector.

1×**BPLE35-OE**

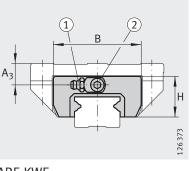
Sheet steel wipers

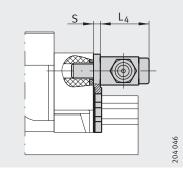
APLE (1), (2) ²⁾

APLE

Dimension table · Dimensions in mm									
Designation ¹⁾		Mass	Dimensio	ons			Suitable for linear		
With grease lubrication	With oil lubrication	m ≈g	В	Н	L4	S	A ₃	recirculating ball bearing and guideway assembly	
APLE20-FE	APLE20-OE	35	40	24	19	1,2	6,5	KUE20	
AFLL20-IL	AFLL20-OL		40	24		1,2	0,5	KUE20-H	
APLE25-FE	APLE25-OE	39	44	25,3	19	1,2	10	KUE25	
AFLLZJIL						1,2	14	KUE25-H	
APLE30-FE	APLE30-OE	4.2	58	28	10	1.2	13	KUE30	
APLEOU-FE	APLE30-OE	43	20	20	19	1,2	16	KUE30-H	
APLE35-FE		47	68	30,5	19	1.2	16	KUE35	
	APLE35-OE					1,2	23	KUE35-H	

Attention!

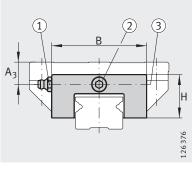

During fitting, it must be ensured that there is a uniform gap between the guideway and the wiper.

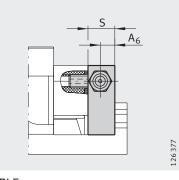

APLE..-FE has a lubrication nipple. APLE..-OE has an oil connector (similar to DIN 3871-A).

²⁾ (1) Lubrication nipple (2) Tightening torque M_A of fixing screws = 1,5 Nm

Wipers

ABE.KWE (1, 2)²⁾


ABE.KWE


Dimension table · Dimensions in mm									
Designation ¹⁾			Dimens	sions				Suitable for linear	
With grease lubrication With oi	llubrication	m ≈g	В	Н	S	A ₃	L ₄	recirculating ball bearing and guideway assembly	
ABE.KWE25-FE-NBR ABE.KW	VE25-OE-NBR	27 /	45,7	25,4	4 E	10	19	KUE25	
ABE.KWE25-FE-FPM ABE.KW	VE25-OE-FPM	37,4	45,7	25,4	4,5	14	19	KUE25-H	
ABE.KWE30-FE-NBR ABE.KW	VE30-OE-NBR	41	57.4	27,9	4,5	13	- 19	KUE30	
ABE.KWE30-FE-FPM ABE.KW	VE30-OE-FPM	41	57,4			16		KUE30-H	
ABE.KWE35-FE-NBR ABE.KW	VE35-OE-NBR	44,4	67.2	30,9	4 E	16	19	KUE35	
ABE.KWE35-FE-FPM ABE.KW	VE35-OE-FPM	44,4	67,3	50,9	4,5	23		KUE35-H	

¹⁾ ABE.KWE..-FE has a lubrication nipple. ABE.KWE..-OE has an oil connector (similar to DIN 3871-A).

²⁾ (1) Lubrication nipple (2) Maximum tightening torque M_A of fixing screw = 1,5 Nm

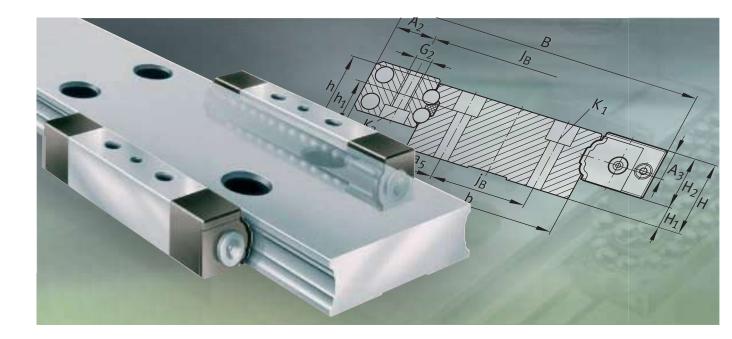
Lubrication adapter plate

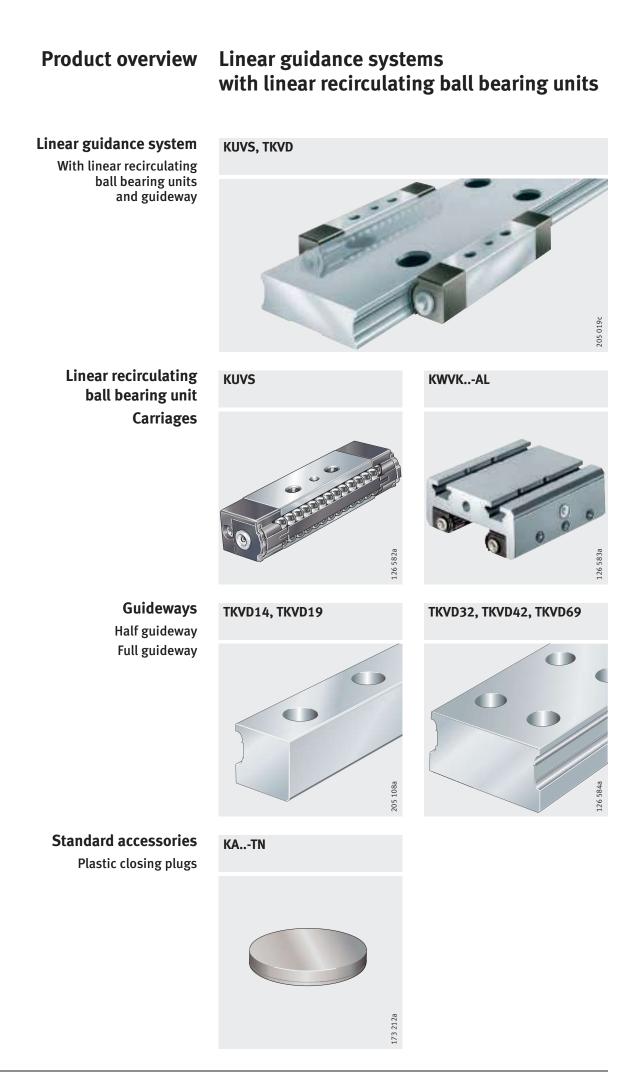
BPLE (1), (2), (3)²⁾ BPLE

Dimension table · Dimensions in mm									
Designation ¹⁾	Mass	Dimensi	ons		Suitable for linear				
With grease lubrication	With oil lubrication	m ≈g	В	Н	S	A ₆	A ₃	recirculating ball bearing and guideway assembly	
BPLE20-FE	BPLE20-OE	25	42	23,5	12	6,5	6,5	KUE20	
BFLL20-IL			42	2,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			0,5	KUE20-H	
BPLE25-FE	BPLE25-OE	34	46,5	26	12	6,5	10	KUE25	
DFLE23-FE							14	KUE25-H	
BPLE30-FE			58	20	12	6.5	13	KUE30	
BPLE3U-FE	BPLE30-OE	44	20	28	12	6,5	16	KUE30-H	
BPLE35-FE	BPLE35-OE	54	68	31	12	6,5	16	KUE35	
						0,5	23	KUE35-H	

Attention!

In series KUE..-H, the lubrication nipple or


the oil connector protrudes laterally approx. 9 mm from the profile of the carriage. The lubrication nipple and screw plug can be interchanged.


BPLE..-FE has a lubrication nipple. BPLE..-OE has an oil connector (similar to DIN 3871-A).

- ²⁾ ① Lubrication nipple
 ② Tightening torque M_A of fixing screws = 1,5 Nm
 ③ Screw plug M8×1

Features These linear guidance systems are constructed using full complement linear recirculating ball bearing units KUVS and guideways TKVD. They have adjustable clearance and are suitable for long, unlimited stroke lengths.

The linear recirculating ball bearing units can be linked directly to the adjacent construction or integrated in a carriage and thus incorporated into the adjacent construction. This allows very flexible solutions with a low section height.

Since the linear recirculating bearing units are arranged to the sides of the guideway, this gives a large support distance.

Load carrying capacity The rolling elements are in two point contact with the raceways and have a contact angle of 45°.

The guidance systems can support forces from all directions – apart from the direction of motion – and moments about all axes, *Figure 1*.

Their load carrying capacity corresponds approximately to that of the four-row linear recirculating ball bearing and guideway assemblies KUVE, while the rigidity is somewhat lower.

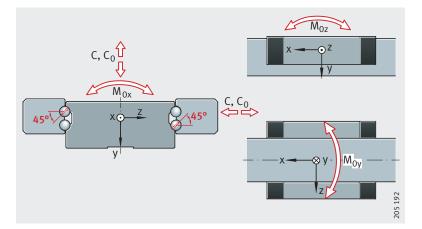
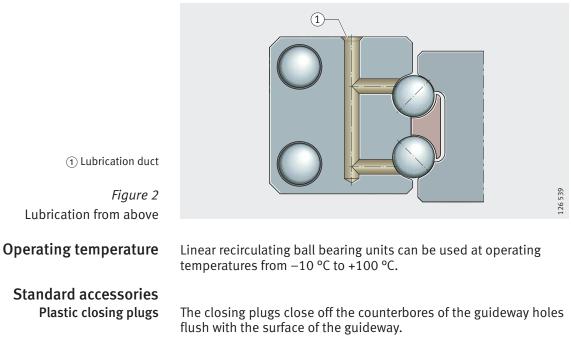


Figure 1 Load carrying capacity and contact angle

Linear recirculating ball bearing units

The main body of the linear recirculating ball bearing units is made from hardened and ground steel and has two raceways with profiled ends. It is screw mounted to the adjacent construction by means of threaded through holes.

The balls are recirculated in enclosed channels with plastic return elements. A plastic crosspiece running between the end pieces retains the balls in the main body while the linear recirculating ball bearing unit is not yet mounted.


Carriage The carriage KWVK..-AL has a saddle plate made from anodised aluminium in which two linear recirculating ball bearing units KUVS are integrated. Longer carriages with four linear recirculating ball bearing units are also available by agreement. The screw mounting surfaces for the linear recirculating ball bearing units in the saddle plate are precision milled. The carriage can be fixed to the adjacent construction using the T-slots for conventional hexagonal nuts and T-bolts. The bearing clearance of the guidance systems with carriages can be **Clearance adjustment** adjusted by three screws on the side of the carriage. The screws press into the back of the linear recirculating ball bearing unit. Guideway The guideways are available with raceways on both sides (TKVD32, TKVD42 and TKVD69) or as a half guideway with the raceway on one side (TKVD14 and TKVD19). They are made from hardened steel and are ground on all faces, the rolling element raceways are precision ground. Multi-piece guideways If the required guideway length l_{\max} is greater than the value in the dimension tables, the guideways are supplied in several pieces; see page 452. Sealing The linear recirculating ball bearing unit is sealed on all sides by the wipers on the end faces and on the sealing strips which form a gap

seal in conjunction with the guideway.

Lubrication Linear recirculating ball bearing units

The linear recirculating bearing units are supplied protected by a wet preservative. They are suitable for oil and grease lubrication. They have lubrication nipples on both end faces for lubrication. Relubrication can also be carried out from above via a hole, Figure 2.

Carriages A lubrication nipple is fitted to each longitudinal side of the carriages. Lubricant is pressed into the upper hole of the linear recirculating ball bearing unit through this lubrication nipple.

Lubrication from above

, , ,	temperatures from -10 °C to +100 °C.
Standard accessories Plastic closing plugs	The closing plugs close off the counterbores of the guideway holes flush with the surface of the guideway.
Corrosion-resistant designs	Linear guidance systems with linear recirculating ball bearing units are also available in a corrosion-resistant version with the INA special coating Corrotect [®] .

For applications with Corrotect[®], please contact us.

Design and safety guidelines Sealing

The raceways must be kept clean at all times in order to prevent damage to the linear recirculating ball bearing units.

The linear recirculating ball bearing units are protected effectively against contamination by the wipers fitted as standard.

If a guideway is subjected to heavy contamination or aggressive meda, special measures must be taken. One possibility is to cover the whole linear guidance system,

for example by means of a telescopic cover or bellows.

Location In order to achieve high rigidity and high load carrying capacity, the guidance elements should be abutted or fixed by dowels against locating faces on both sides. In order to avoid location defects, the holes in the adjacent construction must be deburred.

Guideway hole patterns

Unless specified otherwise, the guideways have a symmetrical hole pattern, *Figure 3*.

An asymmetrical hole pattern may also be available at customer request. In this case, $a_L \ge a_{L \min}$ and $a_R \ge a_{R \min}$, *Figure 3*.

Locating face
 Symmetrical hole pattern
 Asymmetrical hole pattern

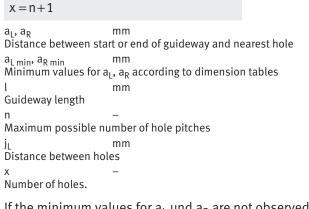
Figure 3

Hole patterns for guideways with two rows of holes

Maximum number of pitches between holes

The number of pitches between holes is the rounded whole number equivalent to:

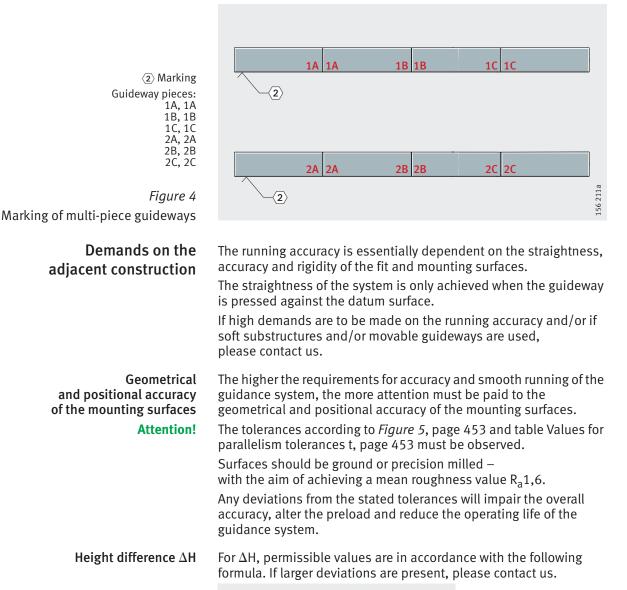
$$n = \frac{l - 2 \cdot a_{L \min}}{j_l}$$


The distances a_L and a_R are generally determined by:

 $a_L + a_R = l - n \cdot j_L$

For guideways with a symmetrical hole pattern:

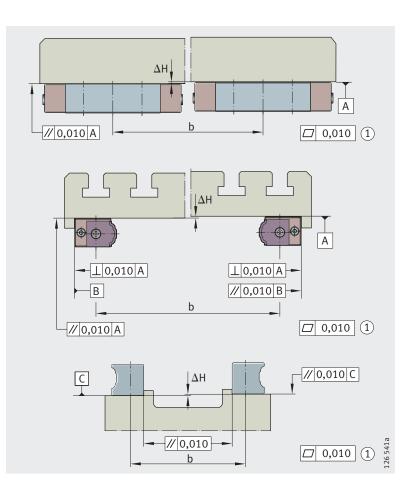
$$a_{L} = a_{R} = \frac{1}{2} \cdot \left(l - n \cdot j_{L} \right)$$


Number of holes:

Attention! If the minimum values for a_L und a_R are not observed, the counterbores of the holes may be intersected.

Multi-piece guideways

If the guideway length required is greater than l_{max} according to the dimension tables, these guideways are made up from individual pieces that together comprise the total required length. The individual pieces are matched to each other and marked, *Figure 4*.


$\Delta_{\rm H} = 0, 2 \cdot b$

 ΔH

Maximum permissible deviation from the theoretically precise position, *Figure 5*, page 453

b mm Centre distance between guidance elements.

μm

 $\underbrace{\textbf{(for all machined surfaces)}}$

Figure 5

Tolerances of mounting surfaces and parallelism of mounted guideways

Parallelism of mounted guideways

Values for parallelism tolerances t

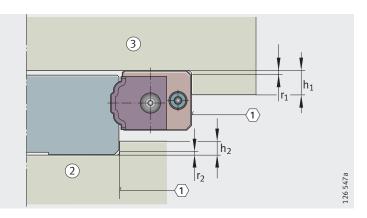
For guideways arranged in parallel, the parallelism t should be in accordance with *Figure 5* and table. If the maximum values are used, the displacement resistance may increase. If larger tolerances are present, please contact us.

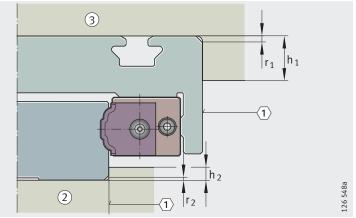
Guideway ¹⁾	Parallelism tolerance
Designation	t
	μm
TKVD14	11
TKVD19	13
TKVD32	9
TKVD42	11
TKVD69	13

¹⁾ In the case of guideways TKVD14 and TKVD19, the locating face is the longitudinal face without a raceway.

Locating heights and corner radii

The locating heights and corner ratio should be designed in accordance with table, *Figure 6* and *Figure 7*.

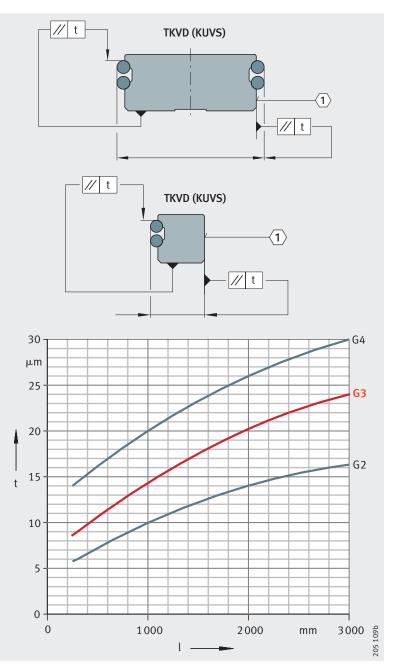

Locating heights, corner radii


Linear recirculating	Locating heig	ghts	Corner radii			
ball bearing unit, carriage Designation	h ₁ mm	h ₂ mm	r ₁ mm	r ₂ mm		
		max.	max.	max.		
KUVS32	5	5	1	1		
KUVS42	5	5	1	1		
KUVS69	5	5	1	1		
KWVK32-AL	7	5	1	1		
KWVK42-AL	7	5	1	1		
KWVK69-AL	12	5	1	1		

KUVS

Locating face
 Machine bed
 Machine table

Figure 6 Locating heights and corner radii for linear recirculating ball bearing unit


KWVK..-AL

Locating face
 Machine bed
 Machine table

Figure 7 Locating heights and corner radii for carriage

Accuracy Accuracy classes

Linear recirculating ball bearing and guideway assemblies are available in accuracy classes G2 to G4, *Figure 8*. The standard is class G2.

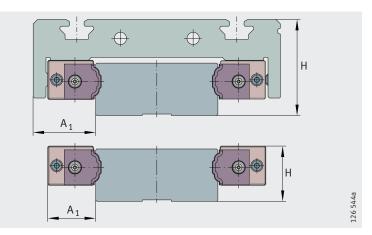
 $\label{eq:linear} \begin{array}{l} t = \mbox{parallelism tolerance} \\ \mbox{with differential measurement} \\ \mbox{l} = \mbox{total guideway length} \\ \hline \mbox{1} \mbox{Locating face} \end{array}$

Figure 8

Accuracy classes and parallelism tolerances of guideways

> Parallelism of raceways to locating surfaces

The parallelism tolerances of guideways are shown in *Figure 8*.


Tolerances

Tolerances: see table Tolerances of accuracy classes and *Figure 9*. The tolerances are arithmetic mean values. They relate to the centre point of the screw mounting or locating surfaces of the carriage. The dimensions H and A_1 (table Tolerances of accuracy classes) should always remain within the tolerance irrespective of the position of the carriage on the guideway.

Tolerances of accuracy classes

Tolerance	KUVS	KWVKAL		
		μm	μm	
Tolerance for height	Н	±25	±75	
Height difference ¹⁾	ΔH	10	50	
Tolerance for spacing	A ₁	±25	±125	
Spacing difference ¹⁾	ΔA_1	20	100	

¹⁾ Difference between several carriages on one guideway, measured at the same point on the guideway.

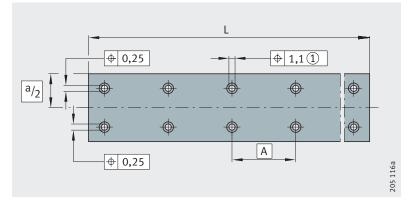


Figure 9 Datum dimensions for accuracy

Positional and length tolerances of guideways

The length tolerance of single-piece guideways is \pm 0,1%. Multi-piece guideways have a length tolerance of \pm 3 mm over the total length.

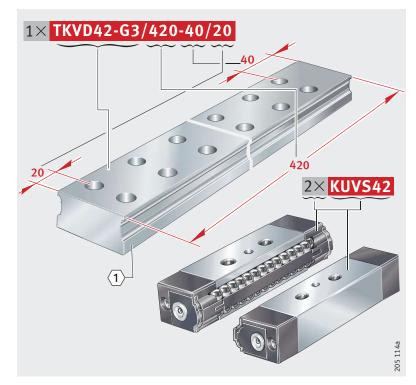
The positional tolerances are shown in *Figure 10*. The hole pattern corresponds to DIN ISO 1101.

(1) for TKVD32 = 0,9 mm

Figure 10 Positional tolerances of guideways

Pieces of joined guideways

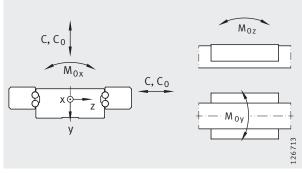
Guideway length ¹⁾ mm	Maximum permissible number of pieces
< 3 000	2
3 000 - 4 000	3
4 000 - 6 000	4
> 6 000	4 + 1 piece per 1 500 mm


¹⁾ $\overline{\text{Minimum}}$ length of one piece = 600 mm.

Ordering example, ordering designation

Linear recirculating ball bearing units	Two linear recirculating ball bearing units Size	KUVS 42
Ordering designation	2× KUVS42 , Figure 11	
Guideway with asymmetrical hole pattern	Guideway for linear recirculating ball bearing units Size Accuracy class Guideway length a _L a _R	TKVD 42 G3 420 mm 40 mm 20 mm

Ordering designation


1×**TKVD42-G3/420-40/20**, *Figure 11*

 $\langle \underline{\textbf{1}} \rangle$ Locating face

Figure 11 Ordering example, ordering designation

Linear recirculating ball bearing units Guideways

Load directions

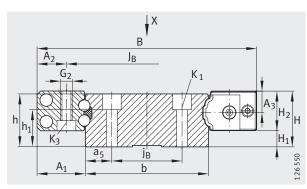
Dimension table · Dimensions in mm													
Linear recirculating Guider	Guideway	Dimensions						Mounting dimensions					
	l _{max}	l _{max} 1)	Н	В	L	h	b	A ₁	A ₂	J _B	B ₁	j _B	a ₅
KUVS32	TKVD32	2 0 0 0	11	51,6	47	10	31,8	9,9	5,5	40,6	-	18	6,9
KUVS42	TKVD42	2 0 0 0	19	75	71	18	42	16,5	10	55	-	24	9
KUVS42	TKVD14	1 500	15	30	71	14	13,5	16,5	10	-	16,2	6	-
KUVS69	TKVD69	2 0 0 0	25	114	96	24	69	22,5	13	88	_	40	14,5
KUVS69	TKVD19	2000	20	42	96	19	19,5	22,5	13	-	22,2	8	-

Maximum length of single-piece guideways. For permissible number of guideway pieces, see page 452. Longer guideways are supplied in several pieces and marked accordingly.

²⁾ a_1 and a_R are dependent on the guideway length.

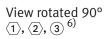
³⁾ If there is a possibility of settling, the fixing screws should be secured against rotation.

	Linear recirculating Guideway ball bearing unit Guideway				Load carrying capacity ⁴⁾⁵⁾						
	Mass		m plug (Basic load r	atings	Moment ratings				
	m				С	C ₀	M _{0x}	M _{Oy}	M _{0z}		
	≈kg				Ν	Ν	Nm	Nm	Nm		
KUVS32	0,025	TKVD32	2,3	KA8-TN	5 700	10600	203	51	51		
KUVS42	0,085	TKVD42	5,54	KA8-TN	13 500	26000	648	211	211		
KUVS42	0,085	TKVD14	1,45	KA8-TN	6750	13000	-	-	-		
KUVS69	0,2	TKVD69	12,42	KA11-TN	26000	46 500	1872	492	492		
KUVS69	0,2	TKVD19	2,66	KA11-TN	13000	23 250	-	-	-		

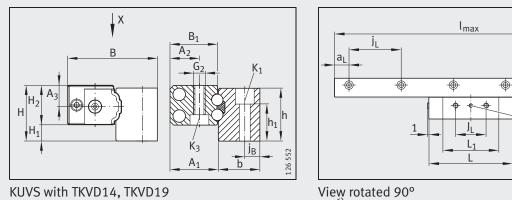

Dimension table (continued)

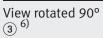
⁴⁾ For two linear recirculating ball bearing units with TKVD32, TKVD42 and TKVD69, one linear recirculating ball bearing unit with TKVD 14 and TKVD19.

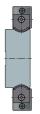
⁵⁾ The usable load carrying capacity is influenced by the connections between the guidance elements and the adjacent construction.


6) (1) Locating face (2) Marking

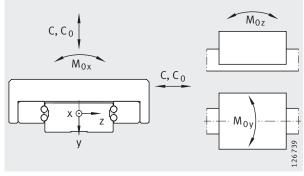
③ Lubrication hole




 L_1 Ь 1 $\langle 1 \rangle$ 3 \$ \oplus \$ ٢ \$||\$ \$ \$ \$||\$ Φ ۲ + a_R + -\$ 2) 126551 l_{max}


KUVS with TKVD32, TKVD42, TKVD69

									Fixing s	crews ³⁾				
L ₁	JL	jL	$a_L, a_R^{(2)}$		H ₁	H ₂	A ₃	h ₁	K ₁	4762-1	G ₂ K ₃ 2-12.9			
			min.	max.						M _A Nm		M _A Nm		M _A Nm
29,8	15	40	20	34	0,5	10,5	6	3,1	M3	2,5	M3	1,5	-	-
48,5	20	60	20	53	5,5	13,5	7,3	11,1	M3	2,5	M4	3	M3	2,5
48,5	20	60	20	53	1,5	13,5	7,3	7,1	M3	2,5	M4	3	M3	2,5
64	35	60	20	53	7,5	17,5	9,5	15,1	M5	10	M6	10	M5	10
64	35	60	20	53	2,5	17,5	9,5	10,1	M5	10	M6	10	M5	10



126 553

a_R

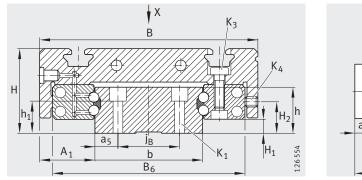
3

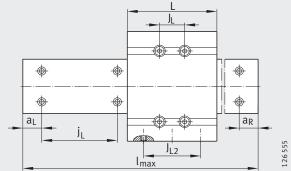
Carriages Guideways

Load directions

Dimension table · Dimensions in mm															
Carriages	Guideway	Dimen	Dimensions A							Mounting dimensions					
		l _{max} 1)	Н	В	L	h	b	A ₁	A ₂	J _B	ј _в	a ₅	B ₆	A ₇	
KWVK32-AL	TKVD32	2 000	26	62	50	10	31,8	9,9	10,7	40,6	18	6,9	51,6	-	
KWVK42-AL	TKVD42	2 0 0 0	35	87	75	18	42	16,5	16	55	24	9	75	31	
KWVK69-AL	TKVD69	2 000	47	130	100	24	69	22,5	21	88	40	14,5	114	42,5	

 Maximum length of single-piece guideways. For permissible number of guideway pieces, see page 452. Longer guideways are supplied in several pieces and marked accordingly.

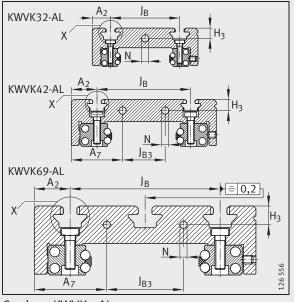

 $^{2)}\,\,a_L\,$ and $a_R\,$ are dependent on the guideway length.

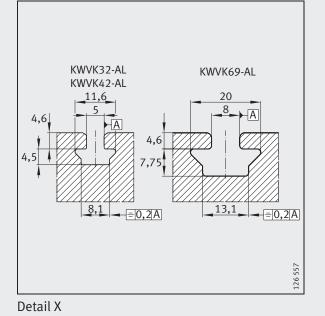

³⁾ If there is a possibility of settling, the fixing screws should be secured against rotation.

Dimension table (continued)

Carriage Guideway			Load carrying capacity ⁴⁾							
	Mass		Mass Closing		Basic load r	atings	Moment ratings			
	m		m	plug	С	C ₀	M _{0x}	M _{Oy}	M _{0z}	
	≈kg		≈kg/m		Ν	Ν	Nm	Nm	Nm	
KWVK32-AL	0,17	TKVD32	2,3	KA8-TN	5 700	10600	203	51	51	
KWVK42-AL	0,45	TKVD42	5,54	KA8-TN	13 500	26000	648	211	211	
KWVK69-AL	1,1	TKVD69	12,42	KA8-TN	26 000	46 500	1 800	490	492	

⁴⁾ The usable load carrying capacity is influenced by the connections between the guidance elements and the adjacent construction.





KWVK..-AL on TKVD

View rotated 90°

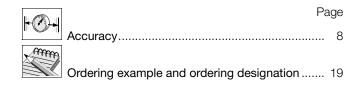
											Fiving	crows ³⁾			
J _{B3}	JL	J _{L2}	jL	a _L , a _R ²⁾		N	H ₁	H ₂	h ₁	H ₃	Fixing screws ³⁾ K ₁ K		K ₃		K ₄
	-			2	-L, -K		-	-	-	-	DIN ISO 4 762-				
												M _A		M _A	
				min.	max.							Nm		Nm	
_	15	25	40	20	35	4,2	0,5	6	3,1	7,5	M3	2,5	M3	0,6	M3
25	20	40	60	20	53	4,2	5,5	12	11,1	8	M3	2,5	M4	2,1	M4
45	35	55	60	20	53	4,2	7,5	17	15,1	11	M5	10	M6	4,8	M6

Carriage KWVK..-AL

Schaeffler Group Industrial

Linear recirculating ball bearing units KUVS

Linear guidance systems with linear recirculating ball bearing units KUVS allow wide distances between support points. Furthermore, the bearing clearance can be adjusted. Linear guidance systems with linear recirculating ball bearing units are four-row systems.


Despite their small envelope dimensions, linear recirculating ball bearing units KUVS have a high load carrying capacity. They run on guideways TKVD with raceways on one or both sides.

Carriages KWVK..AL, in which linear recirculating ball bearing units KUVS are screw mounted, are combined with guideways TKVD to form four-row linear ball bearing and guideway assemblies.

Linear recirculating ball bearing units KUVS, carriages KWVK..AL and guideways TKVD are part of the selfcontained INA system comprising shaft guidance systems, track roller guidance systems, linear ball bearing and guideway assemblies, linear roller bearing and guideway assemblies, linear roller bearing systems and planetary roller screws. The INA system is complemented by a sophisticated range of accessories.

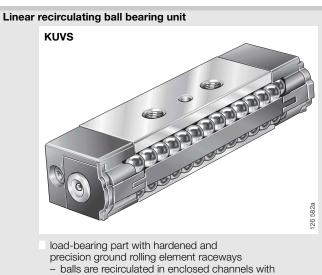
At modern production facilities in numerous countries, INA manufactures a wide range of bearings for rotary and linear motion. The INA application engineering departments and engineering service can give expert assistance in the selection of bearings and guidance systems. Our engineers and technicians can provide comprehensive advice and prepare installation proposals based on our considerable experience, numerous investigations and the design programs derived as a result.

Linear recirculating ball bearing units KUVS

Linear guidance systems with linear recirculating ball bearing units KUVS

Linear guidance systems with linear recirculating ball bearing units KUVS consist of:

- linear recirculating ball bearing units KUVS or
- carriages KWVK..AL


and

guidways TKVD.

The balls and raceways are in two point contact with each other. The contact angles are 45° and are in an O type arrangement.

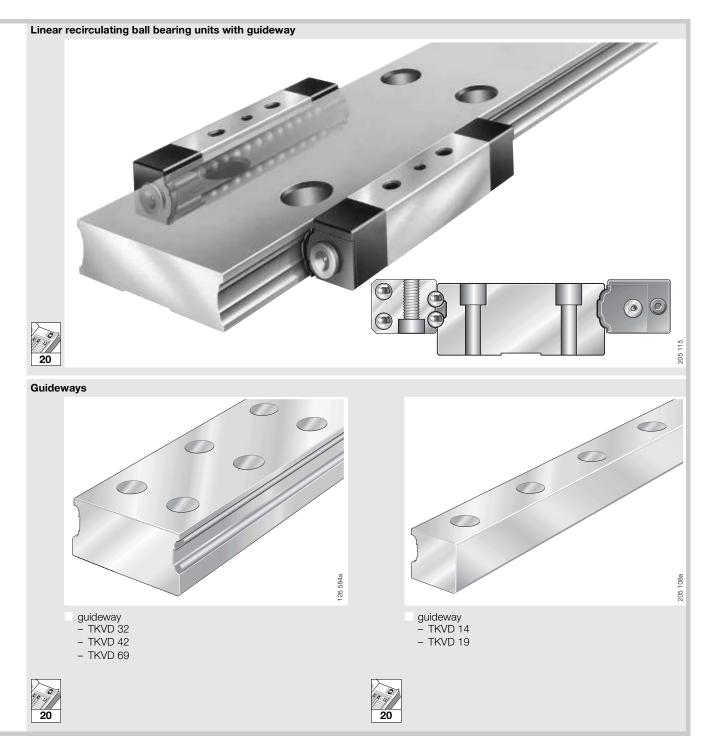
Corrosion-resistant designs

Linear guidance systems with linear recirculating ball bearing units KUVS are also available with the anti-corrosion coating "Corrotect[®]".

- plastic return elements
- full complement design

threaded holes for mounting on the adjacent construction

Carriage



- two or four ball bearing units fitted
- adjustable bearing clearance

Further information on this electroplated coating is given in INA Technical Product Information TPI 77: "Corrotect[®]" coatings for linear guidance systems.

Linear recirculating ball bearing units KUVS

Full complement linear recirculating ball bearing units KUVS (Figure 1) have a hardened and ground load-bearing body made from steel with two raceways. The raceways have profiled ends.

The balls are recirculated in enclosed channels with plastic return elements. A plastic crosspiece running between the end pieces retains the balls in the load-bearing body while the linear ball bearing unit is not mounted.

The linear recirculating ball bearing unit has two threaded through holes which are used for screw mounting on the adjacent construction.

Sealing

The linear recirculating ball bearing unit is sealed on all sides by the wipers on the end faces and on the sealing strips which form a gap seal in conjunction with the guideway.

Lubrication

Linear recirculating ball bearing units KUVS can be lubricated with grease or oil.

Lubrication nipples are pressed into both end faces of the linear ball bearing units. It is als possible to lubricate the linear ball bearing units from above via a hole (Figure 2) which need not be closed off if it is not used.

Delivered condition

Linear recirculating ball bearing units are supplied coated with an oil-based preservative.

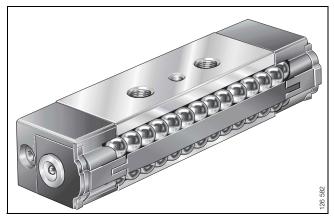


Figure 1 · Linear recirculating ball bearing unit KUVS

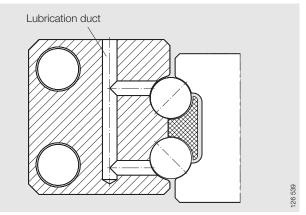


Figure 2 · Lubricant supply from above

Carriages KWVK..AL

The carriage KWVK..AL (Figure 3) has a saddle plate made from anodised aluminium and two linear recirculating ball bearing units KUVS as standard. Longer carriages with four linear recirculating ball bearing units are also available by agreement.

The screw mounting surfaces for the linear ball bearing units in the saddle plate are precision milled.

The carriage has T-slots for fixing to the adjacent construction. The slots can accommodate conventional hexagon nuts and T-nuts.

Clearance adjustment

The bearing clearance in a linear guidance system with carriages KWVK..AL can be adjusted by three screws on the side of the carriage. The screws press into the back of the linear ball bearing unit.

Sealing

See section on linear recirculating ball bearing units KUVS.

Lubrication

See section on linear recirculating ball bearing units KUVS. A lubrication nipple is pressed into each longitudinal face of the carriage. Lubricant can be pressed into the upper hole of the linear ball bearing unit through this lubrication nipple.

Delivered condition

One linear recirculating ball bearing unit is ready mounted in the saddle plate.

The opposing linear ball bearing unit is screwed into place only finger tight. The clearance is adjusted on this side.

Linear recirculating ball bearing units are supplied coated with an oil-based preservative.

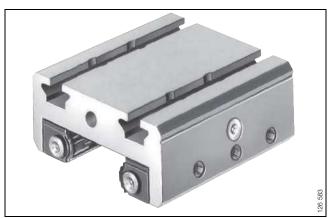


Figure 3 · Carriage KWVK..AL

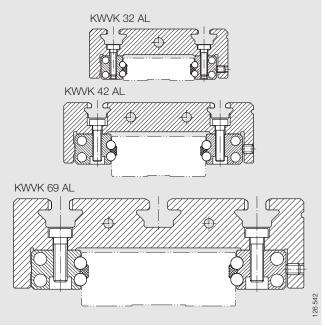
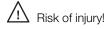


Figure 4 · Cross-sections of carriage KWVK..AL

Guideways TKVD


Guideways TKVD are available in two designs:

- with raceways on both sides, TKVD 32, TKVD 42 and TKVD 69 (Figure 5)
- with raceways on one side, TKVD 14 and TKVD 19 (half guideway, Figure 6).

The guideways are made from hardened steel and ground on all sides. The raceways have a hardness of

670 HV to 840 HV.

The cylindrical counterbores of the fixing holes have sharp edges in order to give a flat guideway surface when closing plugs are inserted flush with the surface.

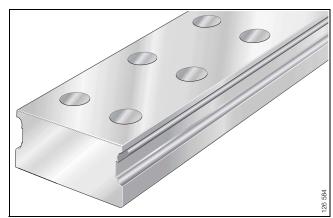


Figure 5 · Guideway TKVD 32, TKVD 42 and TKVD 69

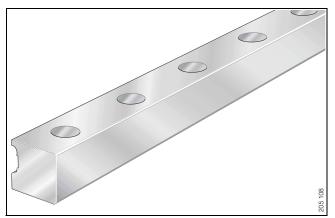


Figure 6 \cdot Guideway TKVD 14 and TKVD 19

Multi-piece guideways

If single-piece guideways are not possible, the guideways can be assembled from sections matched to each other and marked (Figure 7).

Hole patterns (Figure 8)

Unless stated otherwise, guideways are supplied with a symmetrical hole pattern. An asymmetrical hole pattern may be available at customer request.

With a symmetrical hole pattern, $a_L = a_R$ (Figure 8 "top"), where $a_{L \min} \leq a_L \leq a_{L \max}$ and $a_{R \min} \leq a_R \leq a_{R \max}$. With an asymmetrical hole pattern, $a_L \neq a_R$ (Figure 8 "bottom"). a_L is on the marked end of the guideway.

$$a_{L} = \frac{1}{2} \cdot \left(I_{max} - n \cdot j_{L} \right)$$

I_{max} mm Guideway length

Maximum possible number of hole pitches

Hole pitch (specified in *dimension tables*).

The minimum and maximum values for a_L and a_R must be observed (see dimension table)!

If they are not adhered to, the counterbore of a hole may be intersected.

Closing off the fixing holes

Fixing holes can be closed off using plastic closing plugs KA..TN or filled out with resin.



Figure 7 · Multi-piece guideways

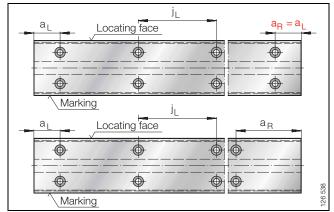


Figure 8 · Symmetrical and asymmetrical hole pattern

Accuracy

Table 1 shows the accuracy of linear recirculating ball bearing units KUVS and carriages KWVK..AL in conjunction with a guideway TKVD.

The tolerances are arithmetic mean values. They relate to the centre point of the screw mounting or locating surfaces of the linear ball bearing unit KUVS or the carriage. The dimensions ΔH and A_1 should always remain within the tolerances in Table 1, irrespective of the position of the guidance elements on the guideway.

The length tolerance of single-piece guideways is $\pm 0,1\%$. Multi-piece guideways have a length tolerance of ± 3 mm over the total length.

The positional tolerance limits the deviation of the hole centre point from the precise theoretical position (Figure 10).

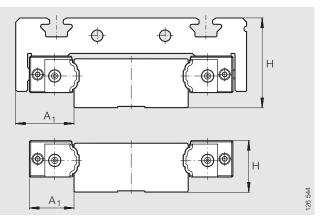


Figure 9 · Reference dimensions for accuracy

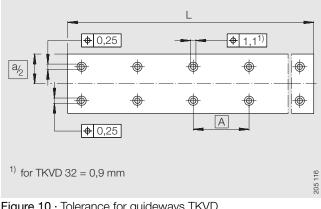


Figure 10 · Tolerance for guideways TKVD, hole pattern to DIN ISO 1101 The parallelism tolerance of the guideways is shown in Figure 11.

Table 1 \cdot Accuracy of linear ball bearing units and carriages

Dimension	KUVS	KWVKAL		
		Tolerance μm	Tolerance μm	
Height tolerance	Н	±25	± 75	
Height difference ¹⁾	ΔH	10	50	
Spacing tolerance	A ₁	±25	± 125	
Spacing difference ¹⁾	ΔA_1	20	100	

¹⁾ Dimensional difference between several carriages on one guideway, measured at the same point on the guideway.

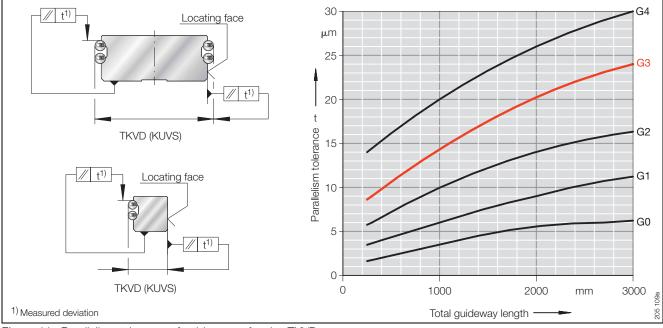


Figure 11 · Parallelism tolerance of guideways of series TKVD

Lubrication

Linear recirculating ball bearing units KUVS can be lubricated with grease or oil. Oil lubrication should be used in preference if possible.

The linear recirculating ball bearing units are supplied coated with an oil-based preservative as standard. The oil used is compatible with oils and greases having a mineral oil base. If greases with polycarbamide thickeners are used, please consult INA.

Linear recirculating ball bearing units run almost exclusively under mixed friction conditions. Doped lubricants (type P to DIN 51502) should therefore be used in preference.

Lubricant supply

This is provided as standard:

- via funnel type lubrication nipples to DIN 3 405 on the end piece
- via the hole in the centre of the load-bearing body.

If a central lubrication system is used:

via the hole in the centre of the load-bearing body.

The handling and use of lubricants is governed by national regulations for environmental protection and health and safety at work as well as information from the lubricant manufacturers. These regulations must be observed.

Lubricant oils and viscosity

Lubricant oils CLP or CGLP to DIN 51517 and HLP to DIN 51524 should be used in preference.

Viscosity

For operating temperatures between +10 $^{\circ}C$ and +70 $^{\circ}C,$ the viscosity should be between ISO VG 68 and ISO VG 220.

For low temperatures, oils with lower viscosity must be used. For highly dynamic applications, lubricant oils to ISO VG 100 are recommended.

Compatibility

If no experience or guidelines from the oil manufacturer are available, lubricant oils must not be used until tests have been carried out to determine their behaviour in relation to:

- plastics
- elastomers

non-ferrous and light metals.

Tests should only be carried out under dynamic conditions and at the appropriate operating temperature. The compatibility of oils must always be checked. In case of doubt, the lubricant manufacturer must be consulted.

Initial operation

The guideway and carriages must be oiled before initial operation and protected against solid and liquid contaminants. The carriages must be lubricated using at least the minimum oil quantity and moved back and forth during this process.

T I I O	N 4 · ·						
Table 2 ·	Minimum	OII	auantity	and	OIL	Impulse	duantity

Size	Minimum oil quantity Q _{min} cm ³	Oil impulse quantity Q _{imp} cm ³ /h
KUVS 32	0,5 incl. 0,6	0,3
KUVS 42	0,5 incl. 0,6	0,3
KUVS 69	0,8 incl. 0,9	0,5

Minimum oil quantity

The minimum oil quantity is measured such that the oil ducts, rolling elements and raceways will be supplied with sufficient quantities of lubricant.

Table 2 shows the minimum oil quantity Q_{min} for initial operation. If the stroke ratio is less than 0,5, please consult INA (stroke ratio: see page 13).

Oil impulse lubrication

Table 2 shows the oil impulse quantity Q_{imp} when a linear recirculating ball bearing unit is connected to a central lubrication system.

Pneumatic oil lubrication

The linear recirculating ball bearing units are also suitable for pneumatic oil lubrication.

Pneumatic oil lubrication may allow smaller quantities of oil to be used than stated in Table 2 (oil impulse lubrication). It is not possible to state definitive quantities since these are essentially dependent on the design of the central lubrication system.

The necessary oil quantity must therefore be determined under operating conditions.

Grease lubrication

INA recommends lithium soap greases with a mineral oil base. The viscosity should be between ISO VG 68 and ISO VG 100. For high loads, greases doped with EP additives are absolutely necessary.

Miscibility

Greases may be mixed if:

- they have the same base oil type
- they have matching thickener types
- they have similar base oil viscosities
 - the difference must not be more than one ISO VG class
- they have the same consistency (NLGI class).

In case of doubt, please consult INA.

ightarrow
ightarrow The miscibility of synthetic oils must always be checked. In case of doubt, the lubricant manufacturer must be consulted.

Compatibility with process materials

(e.g. cooling lubricants) must be checked.

Storage

Experience shows that INA linear guidance systems lubricated with greases having a mineral oil base can be stored for up to 3 years.

- The following preconditions apply:
- closed storage room
- storage temperature between 0 °C and +40 °C
- relative humidity <65%
- protection against chemical agents (vapours, gases, fluids).

It is the user's responsibility to follow the directions given by the lubricant manufacturer.

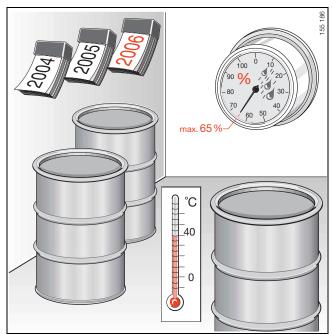


Figure 12 · Storage of greases

Initial operation

The guideways should be lightly greased before initial operation.

Before fitting, the linear recirculating ball bearing units should be filled with the initial grease quantity (Table 3). After fitting, the linear recirculating ball bearing units must be regreased via the lubrication devices connected until fresh grease emerges from the linear ball bearing units: the linear recirculating ball bearing units should be moved several times without load and regreased repeatedly.

Relubrication

The relubrication quantity is approximately 50% of the initial grease quantity. Relubrication should be carried out with several partial quantities at shorter intervals in preference to a single regreasing at the end of the relubrication interval.

The relubrication interval and quantity can only be determined precisely under operating conditions since it is not possible to calculate all the influences in advance. An observation period of adequate length must be allowed.

Relubrication interval

If the guide value for the grease operating life $t_{fG}\,$ is less than the required operating duration of the linear unit, relubrication must be carried out.

Relubrication must be carried out at a time when the old grease can still be forced out of the carriage by the new grease.

A guide value for the relubrication interval for most applications is:

 t_{fR} = 0,5 \cdot t_{fG} if t_{fG} < t_{fE}

 t_{fR} h Guide value for relubrication interval in operating hours

 $t_{fG} \qquad h \\ Guide value for grease operating life in operating hours$

t_{fE} h Required operating duration in hours.

Table 3 · Size and initial grease quantity

Size	Initial grease quantity g
KUVS 32	0,2 incl. 0,3
KUVS 42	0,8 incl. 1
KUVS 69	2,0 incl. 2,5

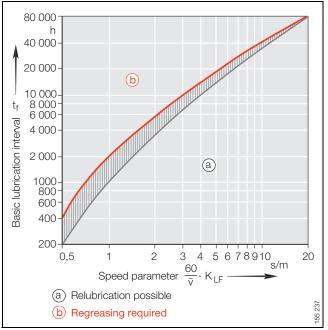
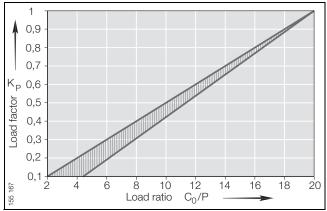



Figure 13 · Determining the basic lubrication interval

Basic lubrication interval

The basic lubrication interval t_f is dependent on the speed parameter. It is determined using Figure 13.

The speed parameter is defined as follows:

Speed parameter : $\frac{60}{\overline{v}} \cdot K_{LF}$

 K_{LF} - Bearing factor for KUVS: K_{LF} = 1,5.

The basic lubrication interval is valid under the following conditions:

- bearing temperature <70 °C</p>
- load ratio $C_0/P = 20$
- Iubrication with high quality lithium soap grease
- no disruptive environmental influences
- stroke ratio between 1 and 10.

Load correction factor Kp

The correction factor K_p takes into consideration the greater strain on the lubricating grease at loads $C_0/P < 20$. The factors in Figure 14 are valid only for high quality lithium soap grease. The preload must be taken into consideration.

Stroke ratio correction factor K_w

The correction factor K_w takes into consideration the travel distance to be lubricated. It is dependent on the stroke ratio und is determined using Figure 15. If the stroke ratio is <1 or >10, the relubrication interval must be shortened in order to reduce possible fretting corrosion.

The stroke ratio is defined as follows:

Stroke ratio:	$\frac{H \cdot 10}{L_1}$
L. mr	n

Effective saddle plate length C₁ from *dimension table*

H mm Stroke length.

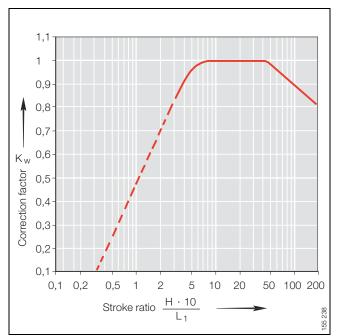


Figure 15 · Stroke ratio correction factor K_w

Environmental correction factor Ku

The correction factor $K_{\rm u}$ (Table 4) takes into consideration the effect of oscillations, vibration (leading to fretting corrosion) and shocks.

These subject the grease to additional strain.

All calculations are invalid if cooling lubricants or moisture penetrate the system.

Table 4 · Environmental correction factor Ku

Environmental influences	K _u
Slight	1,0
Moderate	0,8
Severe	0,5

The design of a bearing arrangement with linear recirculating ball bearing units KUVS or carriages KWVK..AL is essentially determined by:

- the accuracy
- the rigidity
- the load carrying capacity.

This has a direct influence on the adjacent construction and primarily concerns:

- the geometrical and positional accuracy of the mounting surfaces
- the methods used to locate the guidance elements
- the sealing of the bearing arrangement.

Geometrical and positional accuracy of the mounting surfaces

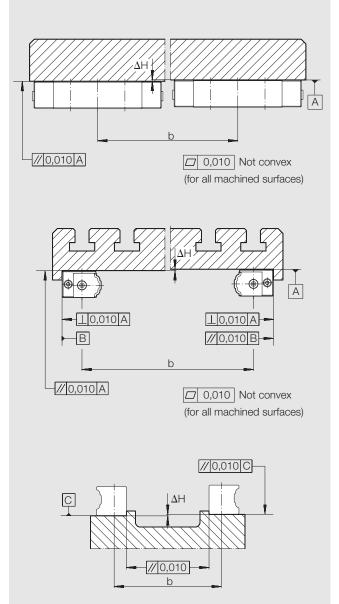
The higher the requirements for accuracy and smooth running of the guidance system, the more attention must be paid to the geometrical and positional accuracy.

The mounting surfaces, i.e. the support and locating surfaces, should be designed according to the tolerances in Figure 16.

The surfaces can, for example, be produced using grinding or precision milling. The objective should be to achieve a mean roughness of R_a 1,6.

If the tolerances are not adhered to, the overall accuracy of the guidance system will be impaired, even though linear guidance systems with linear recirculating ball bearing units KUVS or carriages KWVK..AL can partially compensate for inaccuracies.

The dimension Δ H (Figure 16) indicates the possible height offset of the support surface. For linear guidance systems with linear recirculating ball bearing units KUVS or carriages KWVK..AL, the permissible dimension Δ H is:


 $\Delta H = 0, 2 \cdot b$

ΔH m Height offset

b mm

Centre distance between guidance elements.

If the height offset is larger than that calculated using the above formula, this will affect the operating life.

(for all machined surfaces)

Figure 16 · Tolerances for mounting surfaces

Parallelism of mounted guideways

For two or more guideways parallel to each other, the parallelism according to Table 5 and Figure 16 must be observed.

If the maximum values (Table 5) are used, this may increase the displacement resistance.

Table 5 · Parallelism according to Figure 16 for mounted guideway

Guideway size ¹⁾	Parallelism t
	μm
TKVD 14	11
TKVD 19	13
TKVD 32	9
TKVD 42	11
TKVD 69	13

¹⁾ In the case of guideways TKVD 14 and TKVD 19, the locating face is the longitudinal face without a raceway.

Location

If high rigidity and high load carrying capacity are required, the guidance elements should be abutted or fixed by means of dowels on both sides against locating faces.

In order to avoid location defects, the holes in the adjacent construction must be carefully deburred.

The heights and corner radii of the locating faces correspond to the dimensions in Table 6 (Figures 17 and 18).

Table 6 ·	Locating heights and	corner radii	(Figures 1	7 and 18)
Table 0	Loouling norgino and	oonnor raam	(ingaloc i	

Size	r ₁ max.	h ₁	r ₂ max.	h ₂ max.
KUVS 42	1	5	1	5
KUVS 69	1	5	1	5
KWVKAL 42	1	7	1	5
KWVKAL 69	1	12	1	5

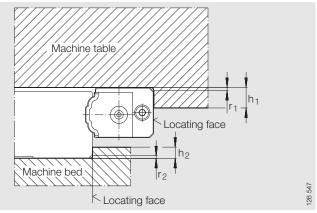
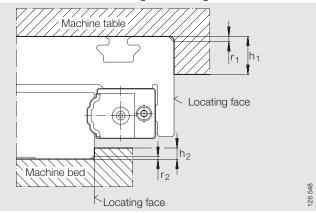
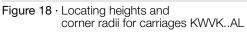




Figure 17 · Locating height and corner radii for linear recirculating ball bearing units KUVS

Lubricant supply

Lubrication nipples in both end faces facilitate lubrication of the linear recirculating ball bearing unit KUVS. It is als possible to lubricate the linear ball bearing unit from above via a hole (Figure 2, page 4); which need not be closed off if it is not used.

The carriage KWVK..AL is lubricated via the lubrication nipples in the linear recirculating ball bearing units. In addition, a lubrication nipple is inserted on each longitudinal face of the carriage through which lubricant can be pressed into the uppoer hole in the linear recirculating ball bearing units (Figure 3, page 5).

Sealing

The raceways must be kept clean at all times in order to prevent damage to the linear recirculating ball bearing units.

The linear recirculating ball bearing units are protected effectively against contamination by the wipers fitted as standard.

If a guideway is subjected to severe contamination or aggressive media, special measures must be used. One possibility is to cover the whole linear guidance system, for example by means of a telescopic cover or bellows.

Load carrying capacity and life

The load carrying capacity is described in terms of the basic dynamic load rating C, the basic static load rating C_0 and the basic static moment rating M_0 . The dimension tables state the values for C and C_0 as well as M_{0x} , M_{0y} and M_{0z} (Figures 19 and 20).

Basic rating life in 100 000 m

The basic rating life is reached or exceeded by 90% of a sufficiently large group of apparently identical bearings before the first evidence of material fatigue occurs.

$$L = \left(\frac{C}{P}\right)^3$$

$$H \cdot n_{osc} (P)$$

$$L_{h} = \frac{\overline{v}}{\frac{v}{2}} \cdot \left(\frac{v}{P}\right)$$

L m Basic rating life in 100 000 m

L_h h Basic rating life in operating hours

C N Basic dynamic load rating

P N Equivalent dynamic load

H mm

Single stroke length for reciprocating motion n_{osc} min⁻¹

Number of return strokes per minute

√ m/min Mean travel velocity.

. According to DIN 636-1, the equivalent dynamic load should not exceed P = 0,5 \cdot C.

Basic rating life in 10000 m

In order to calculate the basic rating life in 10 000 m, the basic load rating C must be multipled by a factor of 1,26; the calculation of life values in 10 000 m is common among Japanese rolling bearing manufacturers.

$$L_{5 \cdot 10^4} = \left(\frac{1,26 \cdot C}{P}\right)^3$$

Static load safety factor

The static load safety factor S_0 indicates the security with regard to permissible permanent deformation in the rolling contact without affecting guidance accuracy and smooth running:

S ₀	=	$\frac{C_0}{P_0}$	

$$S_0 = \frac{M_0}{M}$$

Static load safety factor

C₀ N Basic static load rating

P₀ N Equivalent static bearing load (see "Equivalent bearing load")

 $\ensuremath{\text{M}_0}\xspace$ Nm Static moment rating in load direction (M_{0x}, M_{0y}, M_{0z})

M Nm Equivalent static moment in load direction.

If high demands are placed on accuracy and smoothness of running, the static load safety factor should not be less than $S_0=3. \label{eq:solution}$

Permissible load

The permissible load is restricted by the load carrying capacity of the raceways and the strength of the screw connections and adjacent construction.

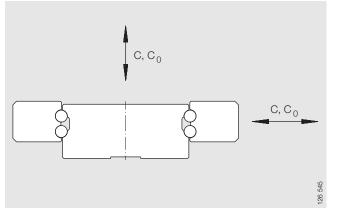
Tensile strength

If the fixing screw threads have sufficient strength, the linear recirculating ball bearing units can be subjected to loads up to the static load carrying capacity C_0 or M_0 .

Equivalent bearing load

Variable bearing load

Where the bearing load varies in steps, the equivalent dynamic load is calculated as follows:


$$\mathsf{P} = \sqrt[3]{\frac{\mathsf{q}_1 \cdot \mathsf{F}_1^3 + \dots + \mathsf{q}_z \cdot \mathsf{F}_z^3}{100}}$$

Ρ Ν Equivalent bearing load

q % Duration of particular steps

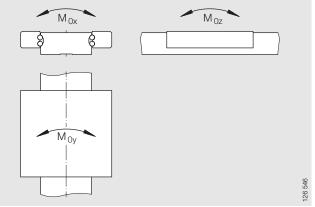
F Ν Load applied during the particular step.

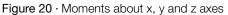
The equivalent static bearing load is defined as:

$P_0 = F_{max}$

Variable speed Where the speed varies in steps, the mean speed is calculated as follows:

 $\overline{\mathbf{v}} = \frac{\mathbf{q}_1 \cdot \mathbf{v}_1 + \mathbf{q}_2 \cdot \mathbf{v}_2 + \dots + \mathbf{q}_z \cdot \mathbf{v}_z}{\mathbf{q}_z \cdot \mathbf{v}_z + \dots + \mathbf{q}_z \cdot \mathbf{v}_z}$ 100


v m/min Equivalent dynamic speed


%

q_i% Duration as a proportion of the total operating time

m/min

v_i m/r Variable speed.

Ordering example and ordering designation

Linear recirculating ball bearing units with guideway

Data on linear recirculating ball bearing units Linear recirculating ball bearing units Size 42

Data on guideway with asymmetrical hole pattern

Guideway ior	
linear recirculating ball bearing units	TKVD
Size	42
Guideway length	420 mm
Spacing aL	20 mm
Spacing a _R	40 mm

Ordering designation: Item 1: 2×KUVS 42. Item 2: 1×TKVD 42/420-20/40 (Figure 21).

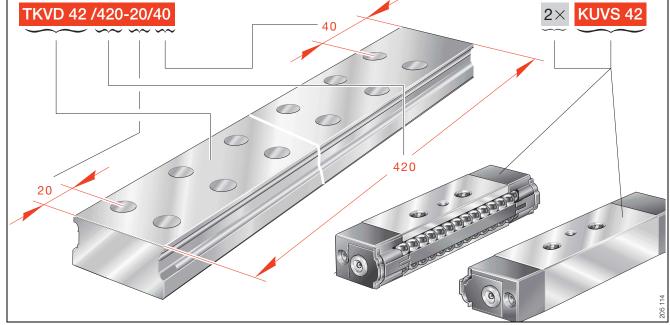


Figure 21 · Ordering example, linear recirculating ball bearing units with guideway

Linear recirculating ball bearing units

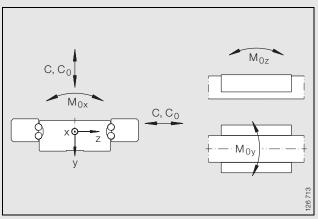
Series KUVS

Guideways

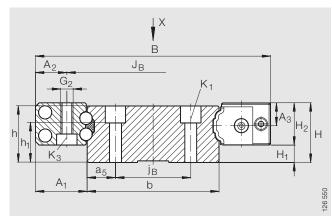
Series TKVD

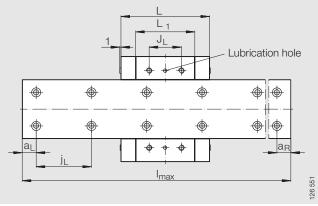
Dimension ta	able · Dim	nensions in mm													
Linear recircul ball bearing u		Guideway				nsions				Mounting dimensions					
Designation	Mass m ≈kg	Designation	Mass m ≈kg/m	Closing plug	Н	В	L	h	b	I _{max} ³⁾	A ₁	A ₂	JB	B ₁	ĴВ
KUVS 32	0,025	TKVD 32	2,3	KA 8 TN	11	51,6	47	10	31,8	2000	9,9	5,5	40,6	-	18
KUVS 42	0,085	TKVD 42	5,54	KA 8 TN	19	75	71	18	42	2000	16,5	10	55	-	24
KUVS 42	0,085	TKVD 14	1,45	KA 8 TN	15	30	71	14	13,5	1 500	16,5	10	-	32,4	6
KUVS 69	0,2	TKVD 69	12,42	KA 11 TN	25	114	96	24	69	2000	22,5	13	88	-	40
KUVS 69	0,2	TKVD 19	2,66	KA 11 TN	20	43	96	19	19,5	2000	22,5	13	-	44,4	8

¹⁾ For to two linear recirculating ball bearing units in the case of TKVD 32, TKVD 42 and TKVD 69, one linear recirculating ball bearing unit in the case of TKVD 14 and TKVD 19.


²⁾ The usable load carrying capacity is influenced by the connections between the guidance elements and the adjacent construction.

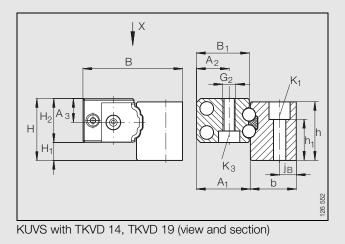
³⁾ Maximum length I_{max} of single-piece guideways, longer guideways are supplied in several sections and are marked accordingly.

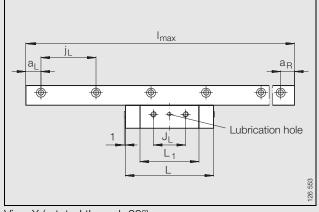

 $^{\rm 4)}$ The dimensions a_L and a_R are dependent on the guideway length, for calculation see page 7.


⁵⁾ If there is a possibility of settling, the fixing screws should be secured against rotation.

Thread and so	rew dia	meters	and tigh	tening t	orques ⁵⁾			
Designation	K ₁ for scre ISO 476		G ₂ for scre ISO 476		K ₃ for scre ISO 476			
		Nm max.		Nm max.		Nm max.		
KUVS 32	M3	2,5	M3	1,5	-	-		
KUVS 42	М3	2,5	M4	3	М3	2,5		
KUVS 42	М3	2,5	M4	3	М3	2,5		
KUVS 69	M5	10	M6	10	M5	10		
KUVS 69	M5	10	M6	10	M5	10		

Load directions





Two KUVS with TKVD 32, TKVD 42 and TKVD 69

View X (rotated through 90°)

												Load carrying capacity ¹⁾²⁾					
a ₅	L ₁	JL	j∟	a _{L min} 4)	a _{L max} 4)	a _{R min} 4)	a _{R max} 4)	H ₁	H ₂	A ₃	h ₁		C ₀ kN	M _{0x} Nm	M _{0y} Nm	M _{0z} Nm	
6,9	29,8	15	40	5	35	5	35	0,5	10,5	6	3,1	5,7	10,6	203	51	51	
9	48,5	20	60	5	55	5	55	5,5	13,5	7,3	11,1	13,5	26	648	211	211	
-	48,5	20	60	5	55	5	55	1,5	13,5	7,3	7,1	6,75	13	-	-	-	
14,5	64	35	60	7	53	7	53	7,5	17,5	9,5	15,1	26	46,5	1872	492	492	
-	64	35	60	7	53	7	53	2,5	17,5	9,5	10,1	13	23,25	-	-	-	

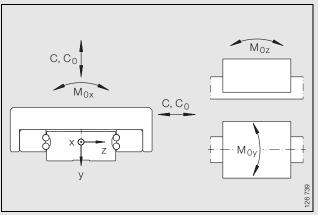
Carriages

Series KWVK..AL

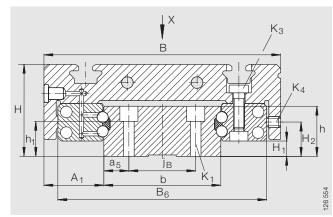
Guideways

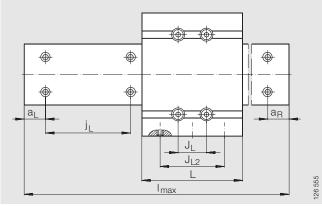
Series TKVD

Dimension tab	Dimension table · Dimensions in mm															
Carriages	Guideway					ension	3			Mounting dimensions						
Designation	Mass m ≈kg	Designation Mass Closing m plug ≈kg/m			HBLhb I _{max}				I _{max}	A_1 A_2 J_B j_B a_5 B_6				B ₆		
KWVK 32 AL	0,17	TKVD 32	2,3	KA 8 TN	26	62	50	10	31,8	2000	15,1	10,7	40,6	18	6,9	51,6
KWVK 42 AL	0,45	TKVD 42	5,54	KA 8 TN	35	87	75	18	42	2000	22,5	16	55	24	9	75
KWVK 69 AL	1,1	TKVD 69	12,42	KA 11 TN	47	130	100	24	69	2000	30,5	21	88	40	14,5	114


1) The usable load carrying capacity is influenced by the connections between the guidance elements and the adjacent construction.

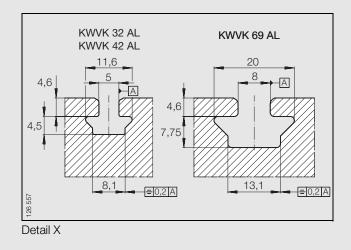
²⁾ Maximum length I_{max} of single-piece guideways, longer guideways are supplied in several sections and are marked accordingly.

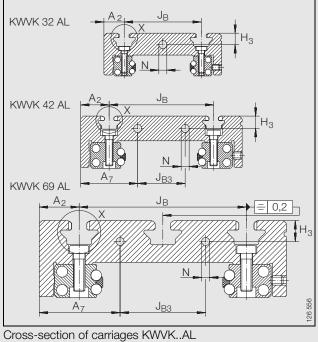

 $^{3)}$ The dimensions a_L and a_R are dependent on the guideway length, for calculation see page 7.


⁴⁾ If there is a possibility of settling, the fixing screws should be secured against rotation.

Thread and so	Thread and screw diameters and tightening torques $^{\!$									
Designation	K ₁ for scre ISO 476		K ₃ for scre ISO 476		K ₄ for screw to ISO 4762-12.9					
		Nm max.		Nm max.						
KWVK 32 AL	M3	2,5	M3	0,6	M3					
KWVK 42 AL	M3	2,5	M4	2,1	M4					
KWVK 69 AL	M5	10	M6	4,8	M6					

Load directions





KWVK..AL on TKVD

View X (rotated through 90°)

												Load	Load carrying capacity ¹⁾					
A ₇	J _{B3}	J_L	J_{L2}	j∟	a _{L min} 3)	a _{L max} 3)	a _{R min} 3)	a _{R max} 3)	Ν	H ₁	H ₂	h ₁	H ₃	С	C ₀	M _{0x}	M _{0y}	M _{0z}
														kN	kN	Nm	Nm	Nm
-	-	15	25	40	5	35	5	35	4,2	0,5	6	3,1	7,5	5,7	10,6	203	51	51
31	25	20	40	60	5	55	5	55	4,2	5,5	12	11,1	8	13,5	26	648	211	211
42,5	45	35	55	60	7	53	7	53	4,2	7,5	17	15,1	11	26	46,5	1872	492	492

Linear Recirculating Roller Bearing and Guideway Assemblies

Series RUE-E / RUE-E-KT-L

SCHAEFFLER GROUP

Concept

Linear Recirculating Roller Bearing and Guideway Assemblies RUE-E/RUE-E-KT-L: Optimum Running Characteristics with Low Friction

High load ratings, robust design, high rigidity and high precision, together with excellent sealing, are the most important conditions that must be fulfilled by linear roller bearing and guideway assemblies in production machinery. Speeds of up to 4 m/s (size 35) and accelerations up to 100 m/s^2 are further performance standards that must be achieved.

If you value products that are easy to fit and maintain as well as a precisely matched range of accessories, the Schaeffler Group and its Linear Technology Division is the ideal partner for you. This is because we offer not just products, but complete system solutions. System solutions that can often be easily configured on a modular basis and with excellent levels of cost-effectiveness.

The newest generation of linear roller bearing and guideway assemblies RUE-E / RUE-E-KT-L are robust monorail guidance systems with very high load carrying capacity and rigidity. With their smooth, uniform running characteristics, high dynamics and wide range of accessories, they are the ideal linear guidance system for moving heavy loads with precise linear travel.

In conjunction with efficient seals, the units have a long operating life even under extreme operating conditions. Type RUE-E-KT-L offers a low-noise solution with a rolling element chain.

Improved manufacturing processes

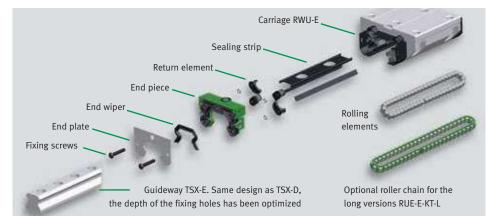
The consistent further development of the patented injection molding technology has lead to the unprecedented quality of the linear roller bearing and guideway assembly RUE-E / RUE-E-KT-L.

- Perfect rolling element guidance in the load and return zones, optimized transitions and the best possible running characteristics with very low stroke pulsation
- More robust rolling element guidance due to a reduction in the number of components
- Improved protection against contamination due to labyrinth seals on the rolling element recirculation system
- Uniform lubricant distribution due to the completely closed and sealed lubrication duct.

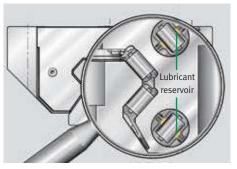
Efficient sealing concept

- Standard seals: single lip upper seals, double lip lower sealing strips as well as double lip end wipers
- Various other sealing arrangements are available as an option

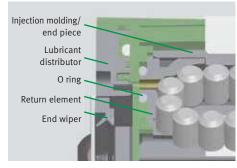
The end plates fitted as standard in front of the contact end wipers offer additional protection against coarse contaminants, which means the contact end wipers retain their full performance capability even in environments with fine, often aggressive particles.


Integrated lubricant reservoir

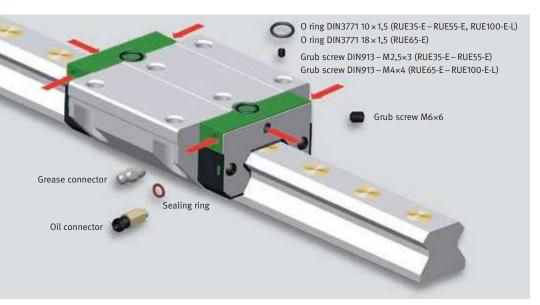
The rolling elements are always supplied with sufficient lubricant thanks to the position of the lubricant reservoir and the patented injection molding technique used in its production.


Only available from INA Linear Technology

INA linear roller bearing and guideway assemblies RUE-E and RUE-E-KT-L enable


a unique combination of the "full complement" principle and "chain systems" in a single guidance system concept. The low-noise rolling element chain system is only available for long carriages, since these offer the best compensation for the reduction in load carrying capacity and rigidity caused by the chain.

Design of the linear roller bearing and guideway assembly RUE-E


Cross-section of carriage

Longitudinal section of carriage

Functions

Permanent Lubrication

Lubricant supply

Permanent Lubrication

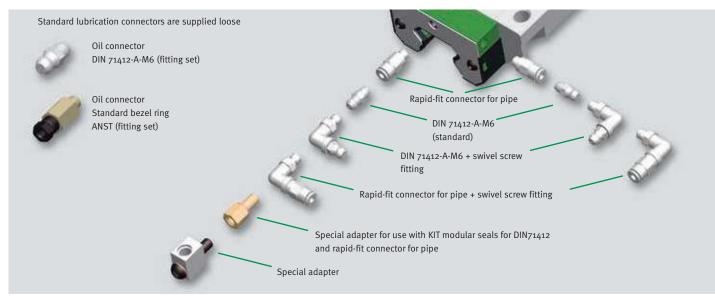
The design of the lubricant distribution ducts and their position in the end piece make a significant contribution to ensuring that the four rows of rolling elements are constantly supplied with fresh lubricant.

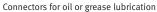
The advantages include:

- Uniform supply irrespective of position
- Defined lubricant access holes in the return element units

Lubrication set

Every linear roller bearing and guideway assembly RUE-E / RUE-E-KT-L is supplied with a lubrication fitting set. This contains all the relevant components for connection to the lubricant supply.


Connector positions


Linear roller bearing and guideway assemblies RUE-E / RUE-E-KT-L offer flexibility in the positioning of lubrication connectors so that they can be easily matched to the adjacent construction:

- From above through the adjacent construction directly into the end piece
- From either side of the end pieces
- From the end.

The connectors are suitable for supply systems with oil, grease and flowable grease.

Easy To Assemble

Connector components

Linear roller bearing and guideway assemblies RUE-E / RUE-E-KT-L can be lubricated via a wide range of standardized connectors. These include standardized oil and grease supply connectors, adapters, etc.

Clamping element RUKS

The hydraulic clamping element is primarily used for the locking in place of machining axes. The axial clearance in the direction of travel can also be minimized. This can be retrofitted at any time to linear roller bearing and guideway assemblies RUE..-E / RUE..-E-KT-L.

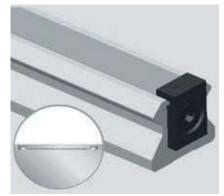
Damping carriage RUDS

The damping carriage is highly effective in reducing vibrations on the guideway. It glides on an oil film between the damping carriage and the guideway. During fitting, the ready-to-fit carriage is simply screwed onto the adjacent construction; it is positioned in front of or behind the linear roller bearing and guideway assembly depending on the type of vibration involved. The advantages include:

- High clamping force with simple fitting within the design envelope of a linear roller bearing and guideway assembly
- Optimized cutting and machining accuracy of high performance machines
- Prevention of micromovements under oscillating load
- Improvements in the axial rigidity of the clamped axis.

The advantages include:

- Effective damping of the linear axes by means of the squeeze film effect
- Impulse lubrication or pressure-free oil feed
- Additional crash safety of the guidance system
- Increases in the surface quality of workpieces due to "chatter-free" machining, even at limiting loads.



Clamping element RUKS

Damping carriage RUDS

Reliable Operation

Guideway covering strip ADB-K

Guideway covering strip ADB-K

The strip is made of a roll-bonded composite material and is simply clamped in the groove on both sides to close off the guideway surface flush with the sides. This provides an optimum surface for wiping.

A fitting device makes fitting quick and precise, especially in the case of long axes.

The covering strips can be supplied in coils up to 300 meters long and can be customized according to requirements.

The advantages include:

- Flush connection with the surface of the guideway
- Secure retention and protection by geometrical locking
- Good sealing action against cooling lubricants.

Braking and clamping element BKE.TSX

Braking and clamping element BKE.TSX

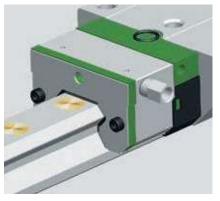
This important safety element slows down the linear axis safely if the power drops or if the control system fails. Driven axes that do not have their own braking or clamping function are stopped instantly and reliably without any input of external energy, giving protection for personnel and machinery. The advantages include:

- Also suitable for use as an emergency stop brake
- Reaction time less than 40 milliseconds
- Secure, powerful braking of linear axes
- Cost-effective, maintenance-free system
- Compact solution within the design envelope of the linear roller bearing and guideway assembly
- Clearance-free brake shoes with automatic wear compensation.

Hydraulic fitting device MVH-D-A

Hydraulic fitting device MVH-D-A

This portable device has been specially designed for pressing brass closing plugs easily and securely into the guideway fixing holes. The advantages include:

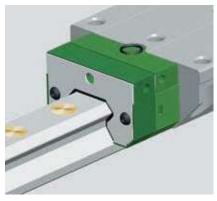

- Simple fitting of the brass plug flush with the surface in a single operation
- Currently the best solution on the market in terms of technology and cost-effectiveness.

Practical Service Packages

KIT modular system "minimal lubricant quantity metering unit"

The lubricant metering unit can be connected to all conventional central lubrication systems. The direct lubricant feed into the recirculation system ensures that the linear roller bearing and guideway assemblies RUE-E / RUE-E-KT-L are always supplied with the correct quantity of lubricant. The advantages include:

- Economical use of lubricants due to precise metering of the smallest possible quantity
- Reliable lubrication in all mounting positions
- Easy connection to the lubrication system
- Lubricant supply can be monitored.

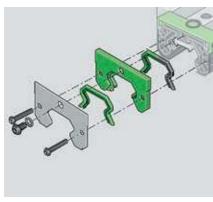

KIT modular system "minimal lubricant quantity metering unit"

KIT modular system

"long term lubrication unit"

The operating life of linear roller bearing and guideway assemblies RUE-E / RUE-E-KT-L can be significantly extended with the large-volume "long term lubrication unit" from INA Linear Technology. Premounted "long term lubrication units" are ready for immediate use. The advantages include:

- High capacity lubricant reservoir
- Lubricant supply irrespective of position
- Minimized lubricant discharge from the guidance system due to a double lip end wiper
- Lower operating and maintenance costs due to longer maintenance intervals
- Absolutely maintenance-free depending on environmental and operating conditions.



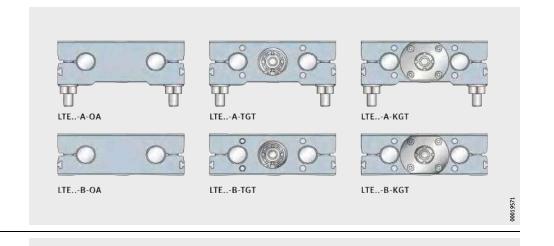
KIT modular system "long term lubrication unit"

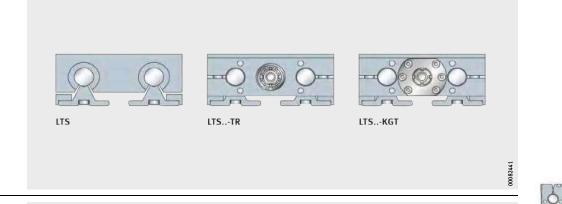
KIT modular system "seals"

The configuration of these matched seal elements is based on practical experience. Single lip or double lip end seals and sealing strips made from proven sealing material are available. The advantages include:

- Versatile use of various seal elements, including cascade arrangements
- Customer-specific configurations are available on request
- Little fitting work required, easy retrofitting, quick and easy to replace
- Simple, easily predictable stockholding
- Positioning freely selectable.

KIT modular system "seals"





Linear tables

Closed shaft guidance system Open shaft guidance system High precision linear tables

LTPG	

Schaeffler Technologies

AL 1 553

Þ

Linear table	Characte	r				
	Size	Width	Height	Length of carriage unit	Total length ¹⁾	Load carrying capacity
		B ₁ , B ₃	н	L	L _{tot}	
		mm	mm	mm	mm	
LTE	LTE08	65	24	65	1000	From all
Without drive	LTE12	85	34	85	1 200	directions
	LTE16	100	38	100	1 400	
	LTE20	130	48	130	1800	
	LTE25	160	58	160	2 0 0 0	
	LTE30	180	67	180	2 200	
	LTE40	230	84	230	2 500	
	LTE50	280	100	280	2 500	
LTE	LTE16	100	38	100	1 400	From all
With trapezoidal screw drive	LTE20	130	48	130	1800	directions
screw unive	LTE25	160	58	160	2 0 0 0	
	LTE30	180	67	180	2 200	
	LTE40	230	84	230	2 500	
	LTE50	280	100	280	2 500	
LTE With ball screw drive	LTE16	100	38	100	1 400	From all directions
	LTE20	130	48	130	1 800	
	LTE25	160	58	160	2 000	
	LTE30	180	67	180	2 200	
	LTE40	230	84	230	2 500	
	LTE50	280	100	280	2 500	

Linear tables with closed shaft guidance system

 Appropriate maximum total length of linear tables LTE taking account of deflection.

 ²⁾ Maximum axial load F_{a max} on spindle bearing arrangement (locating bearing).

Basic loa of shaft g system	d ratings guidance		/ drive	Basic loa of nut	ad ratings	Maximum travel velocity	Maximum accel- eration	Repeat a	ccuracy	Operating tempera- ture	Mounting position
dyn. C	stat. C ₀	Ød ₀	Р	dyn. C	stat. C ₀			Single nut	Double nut, preloaded		
Ν	N	mm	mm	Ν	N	m/s	m/s ²	mm	mm	°C	
630	860	Withc	out driv	e		5	50	-	-	0 to +80	Horizonta
1 4 2 0	1 540										and vertical
1 870	2 1 2 0										venticat
4 1 4 0	4 9 2 0										
7 390	8 880										
9 500	11400										
15830	17600										
22 950	25 200										
1 870	2 1 2 0	12	3	-	630 ²⁾	0,075	2,5	-	±0,25	0 to +80	Horizonta
4 1 4 0	4 9 2 0	16	4	I	2 2 5 0 ²⁾	0,1					and vertical
7 390	8 880	16	4	I							venticat
9 500	11400	20	4	I	2 2 3 0 ²⁾						
9 500	11400	20	8	I		0,2					
15830	17600	24	5	Ι	2 500 ²⁾	0,125					
15830	17600	24	10	Ĩ		0,25					
22 950	25 200	32	6	Ĩ	5 5 3 0 ²⁾	0,15					
1 870	2 1 2 0	12	4	4 900	6 600	0,3	20	±0,05	-	0 to +80	Horizonta
			5	4 400	6 800	0,375					and vertical
4 1 4 0	4 9 2 0	16	5	9 300	13100	0,25	20	$\pm 0,05$	±0,025	0 to +80	Horizonta
			10	15 400	26 500	0,75			-		and vertical
7 390	8 880	16	5	9 300	13100	0,25	20	$\pm 0,05$	±0,025	0 to +80	Horizonta
			10	15 400	26000	0,75					and vertical
9 500	11400	20	5	10 500	16 600	0,29	20	±0,05	±0,025	0 to +80	Horizonta
			10	12700	22100	0,5					and vertical
			20	11 600	18 400	1,16			-		venticat
			50	13000	24 600	2,9					
15830	17600	25	5	12 300	22 500	0,25	20	±0,05	±0,025	0 to +80	Horizonta
		32	10	33 400	54 500	0,5]				and vertical
			20	29700	59800	1]				ventical
			40	14 900	32 400	2			-		
22950	25 200	25	5	12 300	22 500	0,25	20	±0,05	±0,025	0 to +80	Horizonta
		32	10	33 400	54 500	0,5]				and vertical
			20	29700	59800	1					vertical
			40	14900	32 400	2			-		

Schaeffler Technologies

AL 1 555

Linear table	Characte	ristics				
	Size	Width	Height	Length of carriage unit	Total length without bellows	Load carrying capacity
		B ₁ , B ₃ , B ₄	н	L	L _{tot}	
		mm	mm	mm	mm	
LTS	LTS12	85	40	85	6000	From all
Without drive	LTS16	100	48	100		directions
	LTS20	130	57	130		
	LTS25	160	66	160		
	LTS30	180	77	180		
	LTS40	230	95	230		
	LTS50	280	115	280		
LTS	LTS16	100	48	100	2 900	From all
With trapezoidal screw drive	LTS20	130	57	130		directions
screw drive	LTS25	160	66	160		
	LTS30	180	77	180	-	
	LTS40	230	95	230		
	LTS50	280	115	280		
LTS With ball screw drive	LTS16	100	48	100	2 900	From all directions
arive	LTS20	130	57	130	5850	
	LTS25	160	66	160		
	LTS30	180	77	180		
	LTS40	230	95	230		
	LTS50	280	115	280		

Linear tables with open shaft guidance system

 $^{(1)}$ Maximum axial load $\rm F_{a\ max}$ on spindle bearing arrangement (locating bearing).

Schaeffler Technologies

	id ratings guidance	Screw	/ drive	Basic loa of nut	id ratings	Maximum travel velocity	Maximum accel- eration	Repeat	accuracy	Operating tempera- ture	Mounting position
dyn. C	stat. C ₀	$\emptyset d_0$	Р	dyn. C	stat. C ₀			Single nut	Double nut		
Ν	Ν	mm	mm	Ν	Ν	m/s	m/s ²	mm	mm	°C	
1 580	1 780	Witho	out drive	e		5	20	-		0 to +80	Horizonta
2 1 1 0	2 480										and vertical
4 2 2 0	5120										venticat
7 520	9 200										
9760	12 000										
16100	18 400										
 23 480	26 400										
2 1 1 0	2 480	12	3	-	630 ¹⁾	0,075	2,5	-	±0,25	0 to +80	Horizonta
4 2 2 0	5 1 2 0	16	4		2 2 5 0 ¹⁾	0,1					and vertical
7 520	9 200	16	4								venticat
9760	12 000	20	4		2 530 ¹⁾						
			8			0,2					
16100	18 400	24	5		2 500 1)	0,125					
			10			0,25					
23 480	26 400	32	6		5 530 ¹⁾	0,15					
2 1 1 0	2 480	12	4	4 900	6 6 0 0	0,3	20	\pm 0,05	-	0 to +80	Horizonta
			5	4 400	6 800	0,25					and vertical
4 200	5120	16	5	9 300	13100	0,25			±0,025		Verticut
			10	15 400	26 500	0,75			-		
7 520	9 200	16	5	9 300	13100	0,25			±0,025		
			10	15 400	26 500	0,75					
9760	12000	20	5	10 500	16 600	0,29]		±0,025		1
			10	12700	22100	0,5]]	1
			20	11 600	18 400	1,16]		-		1
			50	13 000	24 600	2,9]]	
16100	18 400	25	5	12 300	22 500	0,25]		±0,025		
	1	32	10	33 400	54 500	0,5]				
			20	29700	59800	1]]	1
			40	14900	32 400	2]		-]	1
23 480	26 400	25	5	12 300	22 500	0,25]		±0,025		1
	1	32	10	33 400	54 500	0,5					
	1		20	29700	59800	1					1
	1		40	14900	32 400	2			-		

Schaeffler Technologies

AL 1 | 557

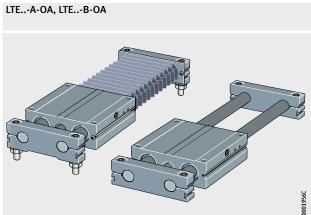
Linear table	Characteristic	s				
	Size	Width	Height	Length of carriage unit	Total length	Load carrying capacity
		B ₄	Н	L	L _{tot}	
		mm	mm	mm	mm	
LTP LTPG With ball screw drive	LTP15-185 LTPG15-185	185	75	180	3 500	From all directions
	LTP15-275 LTPG15-275	275	75	270	3 500	From all directions
	LTP25-325	325	100	320	3 500	From all directions
	LTPG25-325	325	100	320	3 500	From all directions

High precision linear tables with linear recirculating ball bearing and guideway assemblies

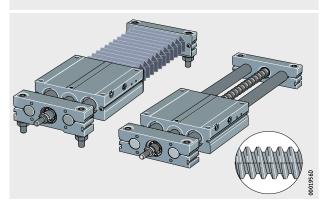
Schaeffler Technologies

of mono	ad ratings rail e system	Screw	/ drive	Basic loa of nut	d ratings	Maximum travel velocity	Maximum accel- eration	Repeat acc	uracy	Operating tempera- ture	Mounting position	
dyn. C	stat. C ₀	$\bigotimes d_0$	Р	dyn. C	stat. C ₀		Singl		Double nut			
Ν	Ν	mm	mm	Ν	N	m/s	m/s ²	mm	mm	°C		
17 150	36 800	20	5	10 500	16 600	0,29	20	±0,05	±0,025	0 to +80	Horizontal	
			10	12700	22 100	0,5					and vertical	
			20	11 600	18 400	1,16			-			
			50	13 000	24 600	2,9						
17 150	36 800	20	5	10 500	16 600	0,29	20	±0,05	±0,025	0 to +80	Horizontal and vertical	
			10	12700	22 100	0,5						
			20	11 600	18 400	1,16			-			
			50	13 000	24 600	2,9						
47 200	83 600	32	5	21 500	49 300	0,215	20	±0,05	±0,025	0 to +80	Horizontal	
			10	33 400	54 500	0,43					and vertical	
			20	29700	59 800	0,86		- ±0,05 ±0,0			venticut	
			40	14 900	32 400	1,73			-			
73 900	268 000	32	5	21 500	49 300	0,215	20		±0,025	0 to +80	Horizontal	
			10	33 400	54 500	0,43					and vertical	
			20	29 700	59 800	0,86					venical	
			40	14 900	32 400	1,73			-			

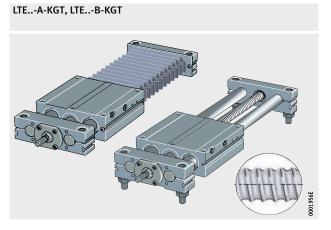
AL 1 559



Linear tables with closed shaft guidance system


Product overview Linear tables with closed shaft guidance system

Without drive LTE..-A



With trapezoidal screw drive

LTE..-A-TGT, LTE..-B-TGT

With ball screw drive

Schaeffler Technologies

Linear tables with closed shaft guidance system

Features	Linear tables LTE are linear units for positioning, handling and machining tasks. They are suitable for moderate loads and short stroke lengths.
Basic design	 The basic design of linear tables LTE has no drive and comprises: a carriage unit made from aluminium alloy with four linear ball bearings KB and one lubrication nipple on each side of the carriage unit two hardened and ground shafts made from high alloy steel two shaft support blocks design A: movable carriage unit design B: stationary carriage unit. Linear tables LTE are supplied already assembled. The linear ball bearings have an initial greasing, are sealed and can be relubricated.
With trapezoidal screw drive	 Linear tables LTE with trapezoidal screw drive comprise the basic design plus the following additional components: a rolled trapezoidal screw spindle with a cylindrical bronze nut on the drive side: a locating bearing in a shaft support block; depending on the table size, the locating bearing comprises one double row angular contact ball bearing or two single row angular contact ball bearing on the opposite side: a non-locating bearing in a shaft support block; the non-locating bearing comprises one single row ball bearing. The spindle support bearings are sealed and lubricated for life. The spindle nut has an initial greasing, is sealed and can be relubricated via a lubrication nipple in the carriage unit.
With ball screw drive	 Linear tables LTE with ball screw drive comprise the basic design plus the following additional components: a rolled ball screw spindle with a cylindrical single nut M. In the case of some pitch values, preloaded double nuts MM are also possible. on the drive side: a locating bearing in a shaft support block; the locating bearing comprises a preloaded double row angular contact ball bearing ZKLN and a lubrication nipple. on the opposite side: a non-locating bearing in a shaft support block; the non-locating bearing comprises a needle roller bearing NA and a lubrication nipple. The spindle support bearings and spindle nuts have an initial greasing, are sealed and can be relubricated. The spindle nuts can be relubricated via a lubrication nipple in the carriage unit.

Linear tables with closed shaft guidance system

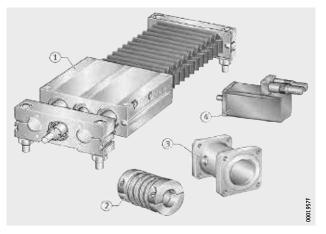
With bellows	Linear tables LTE can be equ with the following exception attached by means of Velcro In this case, the bellows are For the same stroke length, bellows is greater than the t bellows.	ns: LTE8 and LT o tape, with the e mounted usin the total lengtl	E12. The bellov e exception of L g screws. n of a linear tab	vs are TE20: le with				
Screw drive	The spindle thread has a pitch value of between 3 mm and 50 mm, see table.							
	As standard, single nuts with an axial clearance dependent on the pitch are used. In the case of some pitch values, the ball screw drive can be supplied with preloaded double nuts.							
Screw drive variants	Screw drive variants Trapezoidal screw drive Ball screw drive Suffix							
	Pitch 3 mm • - 3							

l	50.00	ante tanàna	screw drive	screw drive	buink
ĺ	Pitch	3 mm	•	1	3
		4 mm	•	•	4
		5 mm	•	•	5
		6 mm	•	-	6
		8 mm	•	1	8
		10 mm	•	•	10
		20 mm	1	•	20
		40 mm	-	•	40
		50 mm	-	•	50
ĺ	Single	nut (cylindrical)	•	•	Μ
	Doubl	e nut (cylindrical)	-	•	MM
		ut drive (no spindle), ellows	-	-	OA

Schaeffler Technologies

Drive elements

Example: LTE


Figure 1

Linear table

Special designs

Linear table LTE20-A
 Coupling KUP
 Coupling housing KGEH
 Servo motor MOT

with closed shaft guidance system Proven drive combinations For linear tables, Schaeffler also supplies couplings, coupling housings, planetary gearboxes and servo motors, *Figure 1*. The range is supplemented by servo controllers for effective drive and control of the motors.

The combination of the necessary drive components for vertical and horizontal applications as a function of the mass to be moved, the acceleration and the travel velocity of carriage units is shown on page 681.

For vertical mounting, motors with a holding brake must be used.

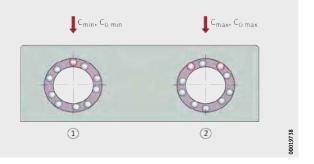
If different loading and kinematic criteria apply, calculation should be based on the least favourable operating conditions. This applies to calculation of the drive motor and design of the gearbox, coupling and servo controller.

Special designs are available by agreement. Examples of these are linear tables LTE with

- guidance shafts and spindles with anti-corrosion protection and a Permaglide guidance system
- bellows resistant to welding beads
- a rolled ball screw spindle to accuracy class 25 µm/300 mm
- a trapezoidal screw drive with a left hand thread
- inductive limit switches
- special machining.

Linear tables with closed shaft guidance system

Design and safety guidelines Load carrying capacity and load safety factor


Preload and rigidity

The load carrying capacities and load safety factors to be observed differ as a function of the mounting position, see section Technical principles, page 12 and Product preselection matrix, page 554.

A preloaded linear guidance system increases the rigidity of a machine system. However, preload also influences the displacement resistance and operating life of the linear guidance system. Linear tables LTE with linear ball bearings cannot, due to their construction, be regarded as preloaded. Individually, each linear ball bearing has operating clearance on the guidance shaft. The operating clearance of the individual linear ball bearings is substantially eliminated and is no longer relevant in practical terms. This is due to the compact, rigid carriage unit and the positional tolerances of the locating bore for the linear ball bearings relative to each other.

Main load direction of linear tables with linear ball bearings The effective load rating of a linear ball bearing is dependent on the position of the load direction in relation to the position of the ball rows.

In the case of linear tables LTE, the linear ball bearings are not fitted in a specific alignment, so the basic load rating data C and C_0 give the minimum values, see dimension tables. The corresponds to a ball row in the linear ball bearing in an apex position relative to the load direction.

C_{min}, C_{0 min} = minimum basic load rating in main load direction C_{max}, C_{0 max} = maximum basic load rating in main load direction

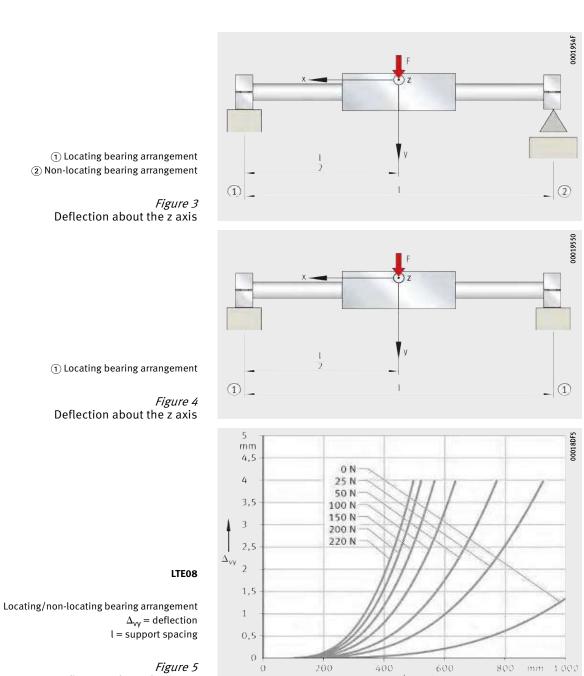
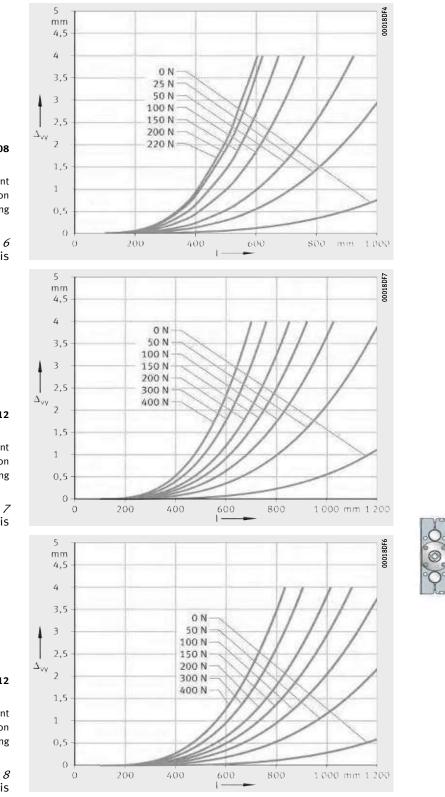

Apex position
 Symmetrical position

Figure 2 Load carrying capacity, dependent on the position of the ball rows

The deflection of linear tables is essentially dependent on the support spacing, the rigidity of the shaft, the adjacent construction and the bearing arrangement. As the rigidity of these components increases, the deflection of the actuators is reduced.
The deflection restricts the effective length of a linear table with a movable carriage unit, design A, or the load carrying capacity.
The diagram values are determined for a bearing arrangement or clamping which is in theory infinitely rigid and are subdivided into locating/non-locating and locating/locating bearing arrangements, starting <i>Figure 3</i> , page 568. The influence of spindles in driven linear tables LTE has not been taken into consideration here.
The deflection of the support rail is valid under the following conditions:
 central position of the carriage unit vertical load
 horizontal mounting position of the linear table.
Due to shaft deflection, the rolling element rows adopt an apex position relative to the outside diameter of the machined linear ball bearing, but this should not be regarded as critical in the load ranges displayed in each case.

The running quality and operating life of the linear ball bearings are not substantially influenced by the guidance system concept "two shafts each with two linear ball bearings" of the linear tables LTE.



Linear tables with closed shaft guidance system

(2) Non-locating bearing arrangement

Deflection about the z axis

Locating/locating bearing arrangement $\Delta_{\text{vy}} = \text{deflection}$ l = support spacing

Figure 6 Deflection about the z axis

LTE12

Locating/non-locating bearing arrangement $\Delta_{vy} = \text{deflection}$ l = support spacing

Figure 7 Deflection about the z axis

LTE12

Locating/locating bearing arrangement $\Delta_{vy} = deflection \label{eq:vy} l = support spacing$

Figure 8 Deflection about the z axis

5 mm 00018DF9 4,5 4 3,5 0 N 50 N 3 100 N 150 N 2,5 200 N $\Delta_{\rm vy}$ 2 300 N 400 N 550 N 1,5 1 0,5 0 Ò 200 400 600 800 1 0 0 0 1 200 mm 1 400 5 mm 00018DF8 4,5 4 3,5 3 ON 2,5 50 N $\Delta_{\rm VY}$ 100 N 2 150 N 200 N 1,5 300 N 1 400 N 550 N 0,5 0 200 400 600 800 1000 1 200 mm 1 400 0 5 00018DFB mm 4,5 4 0 N 3,5 100 N 250 N 3 500 N 750 N 2,5 1 000 N $\Delta_{\rm VY}$ 2 1 250 N 1,5 1 0,5 0

LTE16

Locating/non-locating bearing arrangement $\Delta_{vy} = deflection \label{eq:locating} l = support spacing$

Figure 9 Deflection about the z axis

LTE16

Locating/locating bearing arrangement $\Delta_{vy} = deflection \\ l = support spacing$

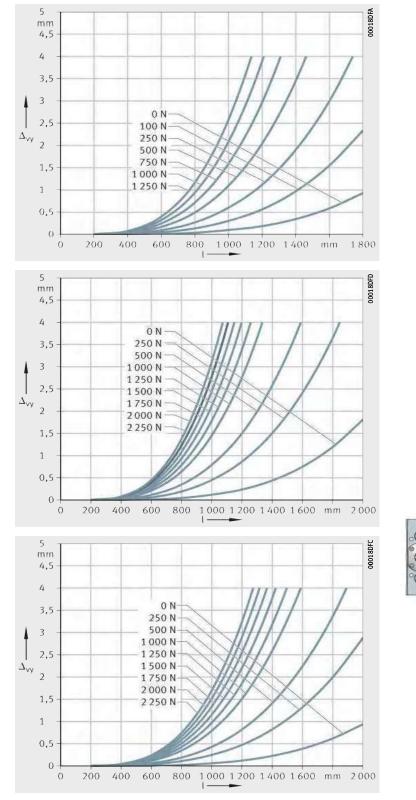
Figure 10 Deflection about the z axis

LTE20

0

200

400


600

Locating/non-locating bearing arrangement $\Delta_{vy} = deflection \label{eq:locating} l = support spacing$

Figure 11 Deflection about the z axis

Schaeffler Technologies

800 1000 1200 1400 mm 1800

LTE20

Locating/locating bearing arrangement $\Delta_{vy} = deflection \label{eq:vy} l = support spacing$

Figure 12 Deflection about the z axis

LTE25

Locating/non-locating bearing arrangement $\Delta_{vy} = \text{deflection}$ l = support spacing

Figure 13 Deflection about the z axis

Locating/locating bearing arrangement $\Delta_{vy} = deflection \label{eq:vy} l = support spacing$

Figure 14 Deflection about the z axis

AL 1 | 571

5 00018DFF mm 4,5 4 0 N 3,5 500 N 3 1000 N 1 500 N 2,5 2 000 N $\Delta_{\rm vy}$ 2 500 N 2 3 000 N 1,5 1 0,5 0 200 400 600 800 1000 0 1 400 1800 mm 2200 5 00018DFE mm 4,5 4 3,5 ON 500 N 3 1 000 N 1 500 N 2,5 2 000 N $\Delta_{\rm VY}$ 2 2 500 N 3 000 N 1,5 1 0,5 0 -Ò. 200 400 600 800 1000 1 400 1800 mm 2200 5 00018E01 mm 4,5 4 0 N 3,5 500 N 1 000 N 3 1 500 N 2,5 2000 N $\Delta_{\rm vy}$ 2 500 N 2 3 000 N 3 500 N 1.5 4000 N 4 500 N 1

Linear tables

with closed shaft guidance system

LTE30

Locating/non-locating bearing arrangement $\Delta_{vy} = deflection$ l = support spacing

> Figure 15 Deflection about the z axis

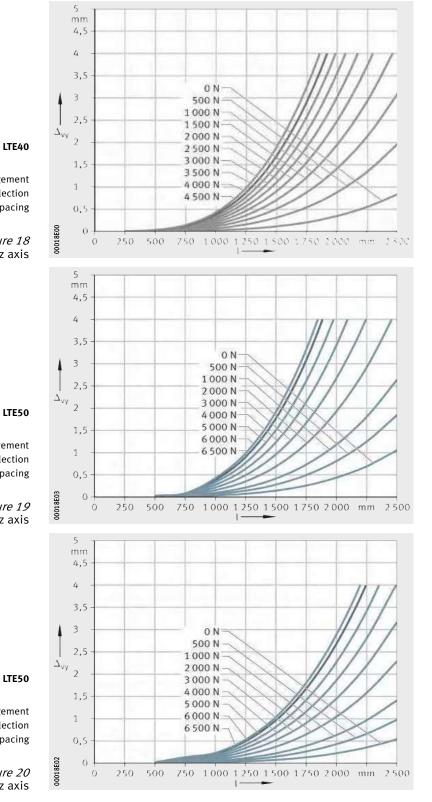
LTE30

Locating/locating bearing arrangement $\Delta_{vy} = deflection$ l = support spacing

> Figure 16 Deflection about the z axis

LTE40

0,5 0


0

Locating/non-locating bearing arrangement $\Delta_{\mathsf{v}\mathsf{y}} = \mathsf{deflection}$ l = support spacing

> Figure 17 Deflection about the z axis

> > Schaeffler Technologies

250 500 750 1000 1250 1500 1750 2000 mm 2500

Locating/locating bearing arrangement Δ_{vv} = deflection l = support spacing

LTE50

Locating/non-locating bearing arrangement Δ_{vv} = deflection l = support spacing

> Figure 19 Deflection about the z axis

Locating/locating bearing arrangement Δ_{vv} = deflection l = support spacing

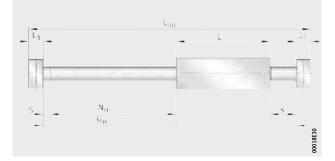
> Figure 20 Deflection about the z axis

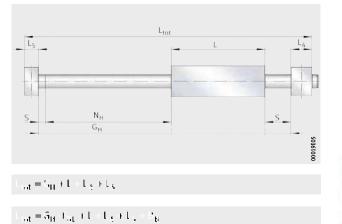
	Linear tables with closed shaft guidance system							
Length calculation of linear tables	The length calculation of linear tables is based on the required effective stroke length N_H . The effective stroke length N_H must be increased by the addition of safety spacing values on both sides of the travel distance. It is only if bellows are present that the effective length B_L must be added. The total length L_{tot} of the linear table is determined from the effective stroke length N_H , the safety spacing S, the carriage unit length L and the lengths of the end plates L_3 , L_4 and L_5 .							
Parameters for length calculation	L ₄ Length of end p L ₅ Length of end p L _{tot} Total length of F _{BL}	mm e length mm , see table, mm age plate mm plates in LTE. mm plate in LTE. mm linear table n factor acc. mm n of bellows mm	page 576 EA-OA, LTEB- TR, LTETGT, L TR, LTETGT, L ording to linear t	.TEKGT .TEKGT				
Total stroke length G _H		h N _H and t ie spindle	n G _H is determ he safety spa pitch P.					
Maximum lengths of linear tables			of linear table ion, see table		etermined tal	king		
Maximum lengths	Designation	L _{tot} mm	Designation	L _{tot} mm	Designation	L _{tot} mm		

	-101		-101		-101
	mm		mm		mm
LTE08	1 000	-	-		-
LTE12	1 200	-	-		-
LTE16	1 400	LTE16TR	1 400	LTE16KGT	1 400
LTE20	1 800	LTE20TGT	1 800	LTE20KGT	1 800
LTE25	2 000	LTE25TR	2 000	LTE25KGT	2 000
LTE30	2 200	LTE30TR	2 200	LTE30KGT	2 200
LTE40	2 500	LTE40TR	2 500	LTE40KGT	2 500
LTE50	2 500	LTE50TR	2 500	LTE50KGT	2 500

Total length L_{tot}

The following equations are designed for one linear table. The parameters and their position can be found in *Figure 21* and *Figure 22* as well as in the table, page 576.




Figure 21 Length parameters for linear tables LTE..-A and LTE..-B

> Linear table without bellows, without drive LTE..-A, LTE..-B

> > Linear table with bellows, without drive LTE..-A, LTE..-B

 $L_{tot} = \widehat{w}_H \cdot F_{BL} + L + 2 \cdot L_3 + B_B$

 $L_{tot} = 5_H + L + 2 \cdot L_3$

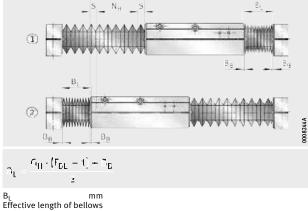
Figure 22 Length parameters for linear tables LTE..-TR, LTE..-TGT and LTE..-KGT

Linear table without bellows LTE..-TR, LTE..-TGT, LTE..-KGT

Linear table with bellows LTE..-TR, LTE..-TGT, LTE..-KGT

Length parameters Valid for design A and design B

Designation	L	L ₃	L ₄	L ₅	S	F _{BL}	BB
	mm	mm	mm	mm	mm		
LTE08-65	65	12			Dependent		
LTE12-85	85	14			on appli- cation	-	-
LTE16-100	100	18			cation	1,5	20
LTE20-130OA	130	20				1,33	20
LTE25-160	160	25	-	-		1,34	21
LTE30-180	180	25				1,27	21
LTE40-230	230	30				1,28	22
LTE50-280	280	30				1,24	22
LTE16-100TR12×3	100		24	18	3	1,5	20
LTE20-130TGT16×4	130		29	20	4	1,33	20
LTE25-160TR16×4	160		33	25	4	1,34	21
LTE30-180TR20×4	180		38	25	4	1,27	21
LTE30-180TR20×8	180		38	25	8	1,27	21
LTE40-230TR24×5	230		39	30	5	1,28	22
LTE40-230TR24×10	230		39	30	10	1,28	22
LTE50-280TR32×6	280		42	30	6	1,24	22
LTE16-1001204	100		24	18	4	1,5	20
LTE16-1001205	100		24	18	5	1,5	20
LTE20-130KGT/5	130		29	20	5	1,33	20
LTE20-130KGT/10	130		29	20	10	1,33	20
LTE25-1601605	160		33	25	5	1,34	21
LTE25-1601610	160	_	33	25	10	1,34	21
LTE30-1802005	180		38	25	5	1,27	21
LTE30-1802010	180		38	25	10	1,27	21
LTE30-1802020	180		38	25	20	1,27	21
LTE30-1802050	180		38	25	50	1,27	21
LTE40-2302505	230		39	30	5	1,28	22
LTE40-2303210	230		42	30	10	1,28	22
LTE40-2303220	230		42	30	20	1,28	22
LTE40-2303240	230		42	30	40	1,28	22
LTE50-2802505	280		39	30	5	1,24	22
LTE50-2803210	280		42	30	10	1,24	22
LTE50-2803220	280		42	30	20	1,24	22
LTE50-2803240	280		42	30	40	1,24	22


Effective length of bellows

The effective length of bellows is the length occupied by the bellows in the fully compressed state. Calculation is based on the total stroke length G_H , *Figure 23*, equation and table, page 576.

 G_H

Carriage unit against the right end stop
 Carriage unit against the left end stop

Figure 23 Effective length calculation

G_H Total stroke length mm

 F_{BL} – Effective length factor according to linear table type, see table, page 576 B_B mm Length of bellows fastener.

Mass calculation

The total mass of a linear table is calculated from the mass of the table without a carriage unit and the carriage unit.

 $m_{\rm tet} = m_{\rm LAW} + m_{\rm RO}$

Values for mass calculation, linear table without screw drive

Designation	Mass				
	Carriage unit	Actuator without carriage unit			
	m _{LAW}	m _{BOL}			
	≈kg	≈kg			
LTE08A, LTE08B	0,24	L _{tot} · 0,0008 + 0,35			
LTE12A, LTE12B	0,63	L _{tot} · 0,0018 + 0,86			
LTE16A, LTE16B	0,9	L _{tot} · 0,0031 + 1,3			
LTE20A-OA, LTE20B-OA	1,8	L _{tot} · 0,004 9 + 2,5			
LTE25A, LTE25B	3,5	L _{tot} · 0,0077 + 4,9			
LTE30A, LTE30B	5,1	$L_{tot} \cdot 0,0110 + 6,8$			
LTE40A, LTE40B	10,3	L _{tot} · 0,0196 + 13,4			
LTE50A, LTE50B	16,4	L _{tot} · 0,0306 + 20,6			

Values for mass calculation, linear table with screw drive

Designation	Mass	
	Carriage unit ¹⁾	Actuator
		without carriage unit
	m _{LAW}	m _{BOL}
	≈kg	≈kg
LTE16A, LTE16B	0,86	$L_{tot} \cdot 0,0039 + 0,4$
LTE20A, LTE20B	1,82	L _{tot} · 0,006 2 + 0,8
LTE25A, LTE25B	3,49	$L_{tot} \cdot 0,0090 + 1,4$
LTE30A, LTE30B	5,04	L _{tot} · 0,0131 + 1,9
LTE40A-25, LTE40B-25	4,3	$L_{tot} \cdot 0,0229 + 2,8$
LTE40A-32, LTE40B-32	10,6	L _{tot} · 0,025 3 + 3,4
LTE50A-25, LTE50B-25	4,3	L _{tot} · 0,0339 + 2,8
LTE50A-32, LTE50B-32	16,5	L _{tot} · 0,0363 + 4,7

1) Including single or preloaded double nut.

Lubrication	The guidance systems and the trapezoidal or ball screw drive in linear tables are initially greased with a high quality lithium complex soap grease KP2P-30 according to DIN 51825 and must be relubricated during operation.
Structure of suitable greases	 The following greases are suitable for the linear ball bearings and the linear recirculating ball bearing and guideway assemblies as well as the screw drives: lithium soap or lithium complex soap grease with base oil having a mineral oil base special anti-wear additives for loads C/P < 8, indicated by "D" is the DIN designation.
	 indicated by "P" in the DIN designation base oil viscosity ISO VG 68 to ISO VG 100 in the case of linear recirculating ball bearing and guideway assemblies consistency in accordance with NLGI grade 2 in the case of linear ball bearings. If different greases are used, their miscibility and compatibility must be checked first.
Relubrication intervals	 The relubrication intervals are essentially dependent on the following factors: the travel velocity of the carriage unit the load the operating temperature the stroke length the environmental conditions and environmental influences the mounting position.

The cleaner the environment, the lower the lubricant consumption.

Calculation of the relubrication interval

The relubrication interval and relubrication quantity can only be precisely determined under actual operating conditions since it is not possible to calculate all the influencing factors. If the relubrication quantity cannot be determined under operating conditions, the guide values in the table should be used. The locating and non-locating bearing in the trapezoidal screw drive are lubricated for life.

Trapezoidal screw drive Ball screw drive Desig-Linear d₀ ball nation bearing Threaded Threaded Non-Locat Non-Locat nut ing locatnut ing locating bear ing bearbearbearing ing ing ing mm mm ≈ g ≈g ≈ g LTE08 0,2 LTE12 0,5 Lubricated for life¹⁾ LTE16 0,8 12 3 2 Lubricated for life 0,2 4 LTE20 1 16 4 3,5 5 0,5 10 1,3 LTE25 2,5 16 4 3,5 5 0,5 10 1,3 LTE30 3,1 20 4 6 5 0,6 10 3,1 20 3 8,6 50 LTE40 5,8 24 5 10 25 5 0,8 32 10 3,1 20 6,8 40 9,5 LTE50 13 0,8 25 5 LTE50 13 32 6 15 10 3,1 20 6,8 40 9.5

1) If relubrication is required due to the application, please consult us.

In the case of linear tables LTE with linear ball bearings, experience shows that the initial greasing is sufficient if the following apply: normal environmental conditions, load ratio C/P > 10, room temperature and v \leq 0,6 v_{max}. If it is not possible to achieve these conditions, relubrication must be carried out.

For the trapezoidal and ball screw drive, a relubrication interval of 200 h to 300 h is sufficient under normal operating conditions. Relubrication must be carried out, irrespective of the result of this calculation, no more than 1 year after the last lubrication.

Relubrication quantities per lubrication nipple

!	Fretting corrosion is caused by lubricant starvation and is visible as a reddish discolouration of the rolling element raceways. Lubricant starvation can lead to permanent damage to the system and there- fore to its failure. It must be ensured that the lubrication intervals are reduced accordingly in order to prevent fretting corrosion. When calculating the relubrication interval, the grease operating life must also be checked. This is restricted to a maximum of 3 years due to the ageing resistance of the grease. It is the user's responsibility to consult the lubricant manufacturer.				
Relubrication procedure	Relubrication should be carried out whilst the carriage unit is moving and warm from operation over a minimum stroke length corresponding to one carriage unit length.				
	During lubrication, it must be ensured that the grease gun, lubrication nipple, environment of the lubrication nipple and the grease are clean.				
	Relubrication should be carried out wherever possible with several partial quantities at various times instead of the complete quantity at the time of the relubrication interval. Relubrication quantities, see table.				
!	The lubrication method involves loss of lubricant. The used lubricant must be collected and disposed of by methods that help to protect the environment.				
	The use of lubricants is governed by national regulations for environmental protection and occupational safety as well as information from the lubricant manufacturers. These regulations must be observed in all cases.				
Lubrication nipples	Linear tables LTE (excluding size LTE20) are relubricated via drive fit lubrication nipples NIP A, while linear tables LTE20 are relubricated via funnel type lubrication nipples NIP to DIN 3405, <i>Figure 24</i> .				
	NIP DIN 3405-A M8 × 1				
NIP A NIP DIN 3405-A M6					

Figure 24 Drive fit lubrication nipple and funnel type lubrication nipple

0001A7BE

Drive fit lubrication nipple

Lubrication nipples for LTE and LTS excluding LTE20

Funnel type lubrication nipple for LTE20

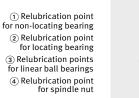
AL 1	581

h mm

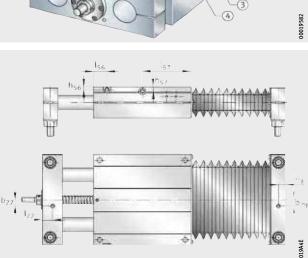
NIP A1 6 4 6 1,5 NIP A2 8 6 9 2 NIP A3 10 9 12 3 Funnel type lubrication nipple 5 d L h

d mm L mm

Funnel type lubrication nipple	S h13 mm	d mm	L	h j6 mn
NIP DIN 3405-A M6	7	M6	9,5	3


D mm

Relubrication points


The linear ball bearings are greased in pairs in each case via a lateral lubrication nipple in the carriage unit. Each spindle nut is supplied with lubricant via a separate lubrication nipple. The spindle bearing arrangement of the ball screw drive in the shaft support blocks is supplied in each case from above via a lubrication nipple, *Figure 25*. Exception: In the case of the actuator LTE20, the spindle bearings fitted are sealed and lubricated for life.

LTE

3

Figure 25 Lubrication points on linear table

Figure 26 Position of relubrication points, linear tables LTE

Position of relubrication points

Desig-	Mounting dimensions										
nation	Type NIP	Witho drive	out	With	screw dr	ive					
		2×fo linea beari	r ball	1×for spindle nut		2×for linearball bearings		Locating bearing		Non- locating bearing	
		h ₅₆	l ₅₆	h ₅₆	l ₅₆	h ₅₇	l ₅₇	b ₇₇	l ₇₇	b ₇₈	l ₇₈
		mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
LTE08	A1	5	32,5	-							
LTE12		6	42,5								
LTE16		6	50	18	30	6	50	9,5	10,5	9	9
LTE20	DIN ¹⁾	8	65	4,5	22	8	65	0	0	0	0
LTE25	A2	8	80	5	53,15	8	80	10	16	0	12,5
LTE30	A2	9	90	5	56,4 ²⁾	9	90	14	14,5	0	12,5
LTE40	A2	9	115	5	56,4 ³⁾	9	115	13 ⁴⁾	17 ⁵⁾	0	15
LTE50	A3	11	140	6	56,4 ³⁾	11	140	0	17 ⁵⁾	0	15

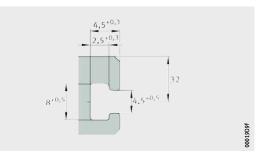
 $^{1)}$ Lubrication nipple DIN 3405-A M6.

²⁾ In the case of a spindle 2020 and 2050, $l_{56} = 52$ mm.

a) In the case of a spindle 2000 and 2000, t₅₆ = 86 mm. In the case of a spindle 3210 and 3220, t₅₆ = 86 mm.
b) In the case of a spindle 3240, t₅₆ = 69 mm.
c) In the case of a spindle size 25, b₇₇ = 0 mm.

⁵⁾ In the case of a spindle size 25, $l_{77} = 15,5$ mm.

Environments with special requirements

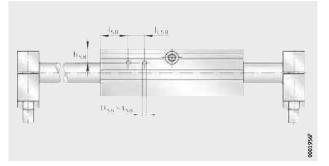

In vacuum applications, lubricants with low vapourisation rates are required in order to maintain the vacuum atmosphere.

In the foodstuffs sector and in clean rooms, special requirements are also placed on lubricants in relation to emissions and compatibility. For such environmental conditions, please consult the grease manufacturer.

T-slots

The shaft support blocks of size LTE20 are designed for thin hexagon nuts in accordance with DIN EN ISO 4035, *Figure 27*.

LTE


Figure 27 T-slot size in shaft support block

Filling openings

Connectors for switching tags

The thin hexagon nuts are pushed into the T-slot on the end faces of the shaft support blocks.

Switching tags can be screw mounted to the linear table in order to activate switches in the adjacent construction. The position and size are dependent on the size, *Figure 28* and table.

Figure 28 Connectors for switching tags on actuator LTE20-A-OA

Mounting dimensions for switching tags on actuator LTE20-A-OA

Series	Mounting dimensions					
Actuator				Ø P9	Depth	
	J _{L58}	l ₅₈	h ₅₈	D ₅₈	t ₅₈	
	mm	mm	mm	mm	mm	
LTE20-A-OA	15	25	13	3,5	12	

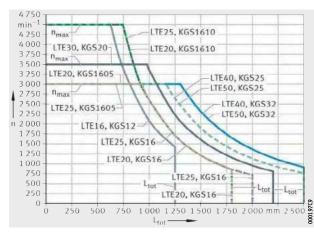
584 | AL 1

Maximum permissible spindle speed

Screw drives must not be allowed to run in the critical speed range. The critical speed is essentially dependent on the following factors:

- spindle length
- spindle diameterspindle bearing arrangement
- mounting method.

The carriage unit velocity v is determined from the spindle speed n and the spindle pitch P. The limit values for velocities must be observed, see page 555.


For calculation of the carriage unit velocity, the following applies:

 $v = \frac{n - 2}{\omega f_* + 1 \dot{\omega} f_* \dot{\omega}}$ v m/s
Carriage unit velocity
n
Spindle speed

P mm Spindle pitch.

Diagram

The diagram shows the relationship for individual series and sizes between the critical speed and the spindle length, *Figure 29*. The diagram takes account of the effective length B_L of the bellows cover.

The running accuracy is essentially dependent on the straightness and accuracy of the fit and mounting surfaces.

The higher the requirements for accuracy and smooth running of the guidance system, the more attention must be paid to the geometrical and positional accuracy of the mounting surfaces.

LTE16 LTE20 LTE25 LTE30 LTE40 LTE50

 n_{max} for pitch 5 mm n = spindle speed L_{tot} = support shaft length

Figure 29

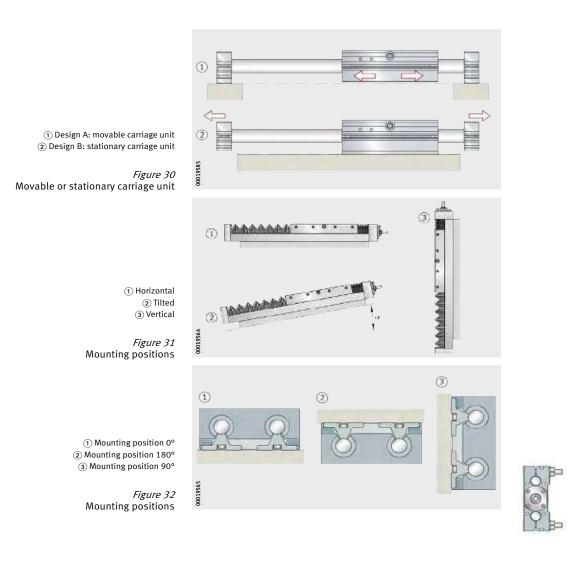
Maximum permissible spindle speed

Influences

of the adjacent construction

Mounting position and mounting arrangement

Linear tables are suitable for numerous mounting positions and mounting arrangements.


The guidance system can be fitted with a movable or stationary linear table, *Figure 30*, page 587. The linear tables can be used in the common horizontal mounting position and also in a vertical mounting position, *Figure 31*, page 587.

Mounting of linear tables with a carriage unit to one side or suspended overhead is possible, *Figure 32*, page 587. In such cases, please consult the Schaeffler engineering service.

.

The ball screw drives fitted in these linear tables are not self-locking. The carriage unit and load must be secured against autonomous travel or dropping if the linear tables are used in a vertical or tilted mounting position. This can be achieved, for example, by means of a brake or counterweight. The drop guard must function in manual operation as well as in motor operation, especially if the motor has no current.

Safety guidelines (especially in relation to personal protection) must be observed.

Kinematic operating limits

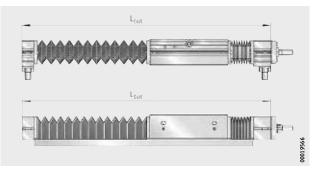
Maximum velocities are determined as a function of the critical spindle speed, see tables. The limiting speed of the bearings can also restrict the spindle speed and thus the velocity.

Kinematic operating limits with trapezoidal screw drive

Series and	Spindle		Maximum	Maximum	Maximum	
size	d ₀	Р	acceleration	velocity	spindle speed	
			a	v	n	
	mm	mm	m/s ²	m/s	min ⁻¹	
LTE16	12	3	2,5	0,075	1 500	
LTE20	16	4	2,5	0,1	1 500	
LTE25	16	4	2,5	0,1	1 500	
LTE30	20	4	2,5	0,1	1 500	
		8				
LTE40	24	5	2,5	0,125	1 500	
		10				
LTE50	32	6	2,5	0,125	1 500	

Kinematic operating limits with ball screw drive

Series and size	Spind d ₀	le P	nut design		Maximum acceleration a		Maximum velocity v	Maximum spindle speed n		
	mm	mm			m/s ²	m/s ²	m/s	min ⁻¹		
LTE16	12	4	м	-	20	-	0,25	4 500		
LTE20	16	5	м	ММ	20	10	0,25	3 0 0 0		
		10	М	-		-	0,75	4 500		
LTE25	16	5	М	MM	20	10	0,25	3 0 0 0		
		10	Μ	MM		10	0,75	4 500		
LTE30	20	5	Μ	MM	20	10	0,29	3 500 ¹⁾		
		-		10	lo M MI	MM		10	0,75	3 0 0 0
			20	М	-		-	1,16	3 500 ¹⁾	
		50	Μ	-		-	0,29	3 500 ¹⁾		
LTE40	25	5	М	MM	20	10	0,25	3 0 0 0		
	32	10	Μ	MM	20	10	0,5	3 000 ¹⁾		
		20	Μ	MM		10	1			
		40	М	-		-	2			
LTE50	25	5	М	MM	20	10	0,25	3 000		
	32	10	M	MM	20	10	0,5	3 000 ¹⁾		
		20	Μ	MM		10	1			
		40	м	-		-	2			


 $^{1)}\ \overline{\mbox{Restricted}}$ by the limiting speed of the bearing with grease lubrication.

Mounting	 In most applications, a linear table is mounted in two steps: location of the support rail or base plate on the adjacent construction
	mounting of the components to be moved on the carriage unit.
	The support rail or base plate is screw mounted to the stationary adjacent construction using conventional fixing screws and washers. Location of the components that are to be moved with the carriage unit can be carried out using conventional fixing screws.
Interchange of linear table components	For the fitting and assembly of linear table components, a fitting and maintenance manual is available. Please consult the Schaeffler engineering service.
Maintenance	 Failure to carry out maintenance, incorrect maintenance, assembly errors and lubrication errors as well as inadequate protection against contamination can lead to premature failure of linear tables. Maintenance work is restricted in general to relubrication, cleaning and regular visual inspection for damage. Maintenance intervals, especially the intervals between relubrication, are influenced by the following factors: the travel velocity the load the stroke length
	the environmental conditions and influences.
!	Guidance parts relevant to function must be greased and supplied with lubricant via appropriate lubrication points.
Cleaning	If heavy contamination is present, linear tables must be cleaned in order to ensure reliable function. Suitable cleaning tools include paintbrushes, soft brushes and soft cloths.
!	Abrasives, petroleum ether and oils must not be used.

Accuracy Length tolerances

The length tolerances for linear tables can be taken from *Figure 33* and the table.

 $L_{tot} = total length$

Figure 33 Length tolerances

Length tolerances for all linear tables

Total length L _{tot} of linear tables LTE	Tolerance
mm	mm
L _{tot} < 400	±0,5
$400 \leq L_{tot} < 1000$	±0,8
$1000 \leq L_{tot} < 2000$	±1,2
$2000 \leq L_{tot} < 4000$	±2
$4000 \leq L_{tot} < 6000$	±3

Accuracy of the screw drive

Linear tables with trapezoidal screw drive are only available with a single nut with clearance, see table, page 591. The pitch accuracy is dependent on the size, see table, page 591. Linear tables with ball screw drive are only available with a single nut with clearance, see table, page 591. Where higher accuracy requirements are present, preloaded (clearance-free) double nuts

!

In the case of standard linear tables with ball screw drive, the nut unit (double nut) can only be preloaded clearance-free if the spindle pitch P is less than the nominal diameter d_0 of the spindle.

are possible for many pitch values, see table, page 591.

Designation	Spindle			Spindle nut		
Designation	Spinale			Spinale nut		
	Nominal diameter	Pitch		Single nut		
	d _o mm	Suffix	Axial clearance mm			
LTE16	12	3	300			
LTE20	16	4	50			
LTE25	16	4	50			
LTE30	20	4	50	м	0 / to 0 F	
	20	8	200	141	0,4 to 0,5	
LTE40	24	5	50			
	24	10	200			
LTE50	32	6	50			

Ball screw drive

Desig-	Spindle			Spindle nut					
nation	Nominal diameter	Pitch		Single	nut	Double	Double nut		
	d ₀ mm	P mm	μm each		Axial clearance mm	Suffix	Axial clearance		
LTE16	12	4	50	М	0,05	-	-		
LTE20	16	5	50	М	0,05	MM	Preloaded		
	10	10	50	Μ	0,05	I	-		
LTE25	16	5	5 50		0,05	MM	Preloaded		
	10	10	50	М	0,05	MM	Preloaded		
LTE30	5			М	0,05	MM	Preloaded		
	20	10	50	М	0,05	MM	Preloaded		
	20	20 50	50	м	0,05	-	-		
LTE40	25	5		М	0,05	ММ	Preloaded		
		10	50	М	0,05	MM	Preloaded		
	32	20	50	М	0,05	MM	Preloaded		
		40		М	0,05	I	-		
LTE50	25	5		М	0,05	MM	Preloaded		
		10	50	М	0,05	MM	Preloaded		
	32	20 50		М	0,05	MM	Preloaded		
		40		М	0,05	-	-		

Ordering example, ordering designation

Available designs

Available designs of linear tables LTE, see table.

Design	Linear table with closed linear ball bearing guidance system							
Size	Size code							
Carriage unit length	Length	L	mm					
Shaft support block types	Design A	А						
	Design B	В						
No drive type	Without drive	• / 0A						
Drive type with	Trapezoidal screw drive	TR / TG	Т					
Spindle dimensions	Trapezoidal screw diameter	mm						
	Spindle pitch	Р	mm					
Nut design	Single nut	•						
Drive type with	Ball screw drive	• / KG	Г					
Spindle dimensions	Ball screw diameter	d ₀	mm					
	Spindle pitch	Р	mm					
Nut design	Single nut	Μ						
	Double nut	MM						
Cover optional	Without bellows	0						
	With bellows	1						
Lengths	Total length	L _{tot}	mm					
	Total stroke length	G _H	mm					

• Standard scope of delivery.

■ Design not available.

Desig	natior	n and s	suffixe	s																				
LTE																								
08	12	16		20		25		30				40				50								
65	85	100		130		160		180				230				280								
А	А	А		А		А		А				А				А								
В	В	В		В		В		В				В			В									
•	•	•		OA		•		•				•				•								
		TR		TGT		TR		TR				TR				TR								
		12		16		16		20		20		20		20		24	4		24		32	32		
		3		4		4		4		8		5		10		6								
		•		•		•		•		•		•		•		•	•							
		•		KGT		•		•	•		•			•										
		12		16		16		20				25	25 32			25	32							
		04	05	05	10	05	10	05	10	20	50	05	10	20	40	05	10	20	40					
		М	М	М	М	М	Μ	М	Μ	М	М	М	М	Μ	М	М	М	М	М					
				ММ		ММ	MM	MM	MM	-		ММ	ММ	MM		MM	MM	MM						
•	•	0		0		0		0				0				0								
		1		1		1		1				1				1								
to be	calcul	ated f	rom to	tal stro	ke len	igth, se	ee pag	e 574																
to be	calcul	ated f	rom ef	fective	stroke	e lengt	h, see	page 5	574															

Schaeffler Technologies

AL 1 593

Closed shaft guidance system, without drive

ft guidance system, without drive	Linear table with closed linear ball bearing guidance system Size code Carriage plate length L Shaft support blocks, design (A or B) Without drive Bellows (with = 1, without = 0) Total length L	LTE 20 130 mm B OA 0 570 mm
	Total length L _{tot}	570 mm
	Total stroke length G _H	400 mm
Ordering designation	LTE20-130-B-OA-0/570-400, Figure 34	

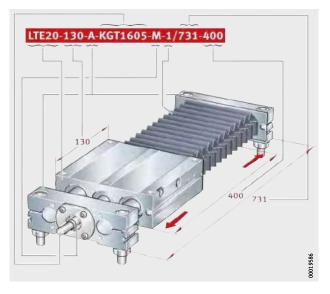
Figure 34 Ordering designation

Closed shaft guidance system, with trapezoidal screw drive

Linear table with closed linear ball bearing guidance system	LTE
Size code	20
Carriage plate length L	130 mm
Shaft support blocks, design (A or B)	A
Trapezoidal screw drive, $d_0 = 16 \text{ mm pitch P} = 4 \text{ mm}$	TGT 16X4
Bellows (with = 1, without = 0)	1
Total length L _{tot}	731 mm
Total stroke length G _H	400 mm
LTE20-130-A-TGT 16X4-1/731-400, Figure 35	

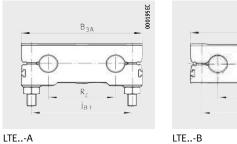
Ordering designation

TTE20-130-A-TGT16×4-1/731-400


Figure 35 Ordering designation

Closed shaft guidance system, with ball screw drive

e system, rew drive	Linear table with closed linear ball bearing guidance system Size code Carriage plate length L Shaft support blocks, design (A or B) Ball screw drive, $d_0 = 16$ mm pitch P = 5 mm Nut (cylindrical, single nut) Bellows (with = 1 without = 0)	LTE 20 130 mm A KGT1605 M 1
	Bellows (with = 1, without = 0) Total length L _{tot}	1 731 mm
	Total stroke length G _H	400 mm


Ordering designation LTE20-130-A-KGT 1605-M-1/731-400, Figure 36

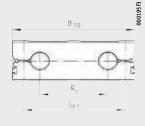
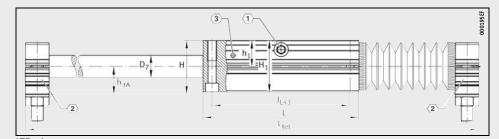


Figure 36 Ordering designation

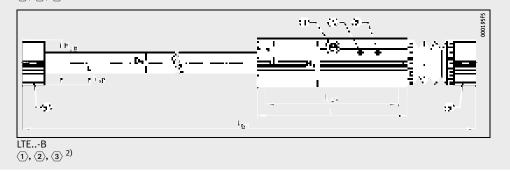
Linear tables

Closed linear ball bearing guidance system Without drive

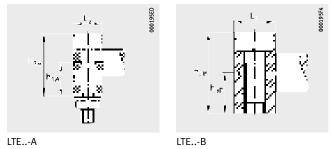
Dimension table · Dimensions in mm


Designation		Dimensions			
Design A	Design B	B ₁ , B _{3A} , B _{3B}	Н	H ₁ , H _{3A}	L
LTE08-65-A ¹⁾	LTE08-65-B ¹⁾	65	24	23	65
LTE12-85-A ¹⁾	LTE12-85-B ¹⁾	85	34	32	85
LTE16-100-A	LTE16-100-B	100	38	36	100
LTE20-130-A-OA	LTE20-130-B-OA	130	48	46	130
LTE25-160-A	LTE25-160-B	160	58	56	160
LTE30-180-A	LTE30-180-B	180	67	64	180
LTE40-230-A	LTE40-230-B	230	84	80	230
LTE50-280-A	LTE50-280-B	280	100	96	280

For further table values, see page 610 and page 611.


Calculation of length L_{tot} , see page 574.

 $^{1)}$ Not available with bellows.

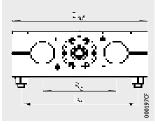

²⁾ (1) Lubrication nipple DIN 3405-A M6, see page 581.
 (2) Filling openings, see page 584.
 (3) Switching tag connectors on carriage unit, see page 584.

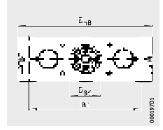
LTE..-A $\langle 1 \rangle$, $\langle 2 \rangle$, $\langle 3 \rangle$ ²⁾



LTE..-B

Μοι	Mounting dimensions													
ØD	₇ h ₁	h _{3A}	h _{3B}	H _{3B}	j _{B3}	J _{B43} , J _{L43}	L ₃	Rz						
h7														
8	11,5	12,5	11	22	52	55	12	32						
12	16	18	14	28	70	73	14	42						
16	18	20	16	32	82	88	18	54						
20	23	25	21	42	108	115	20	72						
25	28	30	26	52	132	140	25	88						
30	32	35	29	58	150	158	25	96						
40	40	44	36	72	190	202	30	122						
50	48	52	44	88	240	250	30	152						


 $\mathsf{LTE}\cdot\mathsf{Top}\:\mathsf{view}$


Schaeffler Technologies

AL 1 599

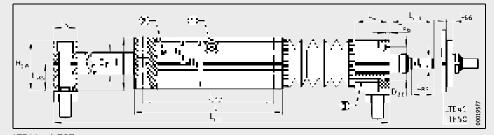
Linear tables

Closed linear ball bearing guidance system With trapezoidal screw drive

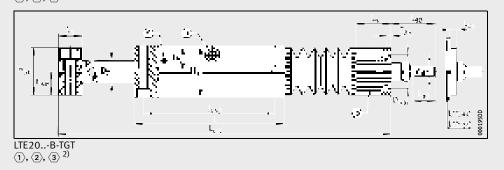
LTE40..-A-TR and LTE50..-A-TR

LTE16..-B-TR, LTE20..-B-TGT, LTE25..-B-TR, LTE30..-B-TR

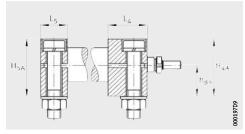
$\textbf{Dimension table} \cdot \text{Dimensions in mm}$

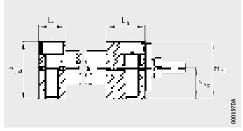

Designation		Dimensions				Mounti	ng dime	limensions		
Design A	Design B	B_1,B_{4A},B_{4B}	Н	$\rm H_1, \rm H_{4A}, \rm H_{5A}$	L	b ₈₇	$arnothing d_{85}$	$arnothing d_{86}$	$\emptyset D_7$	D ₈₆
						±0,2	h7	g7	h7	H7
LTE16-100-A-TR	LTE16-100-B-TR	100	38	36	100	44	5	-	16	17
LTE20-130-A-TGT	LTE20-130-B-TGT	130	48	46	130	62	9 ¹⁾	-	20	30
LTE25-160-A-TR	LTE25-160-B-TR	160	58	56	160	64	9 ¹⁾	-	25	30
LTE30-180-A-TR	LTE30-180-B-TR	180	67	64	180	68	10	-	30	32
LTE40-230-A-TR	LTE40-230-B-TR	230	84	80	230	68	16 ¹⁾	66	40	-
LTE50-280-A-TR	LTE50-280-B-TR	280	100	96	280	62	16	72	50	-

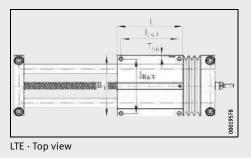
For further table values, see page 610 and page 611.

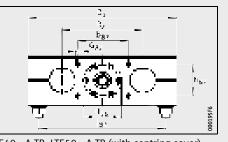

Calculation of length Ltot, see page 574.

 $^{1)}\ \overline{\ }$ Thread witness marks may be present on the pin.


(1) Lubrication nipple DIN 3405-A M6, see page 581.
 (2) Filling openings, see page 584.
 (3) Switching tag connectors on carriage unit, see page 584.

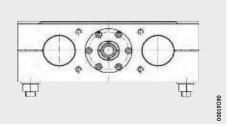

LTE20..-A-TGT


LTE..-A-TR, LTE..-A-TGT · Detail



LTE..-B-TR, LTE..-B-TGT · Detail

G ₈₇	h ₁	h _{4B} , h _{5B}	h ₈₅	h ₈₇	H_{4B} , H_{5B}	j _{B4}	J _{B43} , J _{L43}	L ₄	L ₅	L ₈₅	L ₈₆	L ₈₈	Rz	T ₅₆	T ₈₆
M×Depth				±0,2											
M5×12	18	16	20	22	32	82	88	24	18	12	I	28,5	54	-	3
M6×15	23	21	25	30	42	108	115	29	20	18	I	37	72	3,75	2,8
M6×15	28	26	30	38	52	132	140	33	25	18	I	34,5	88	-	3,3
M6×15	32	29	35	44	58	150	158	38	25	18	I	36,5	96	-	2,8
M8×18	40	36	44	56	72	190	202	39	30	23	9	46	122	-	-
M8×18	48	44	52	62	88	240	250	42	30	23	9	46	152	-	-


LTE40..-A-TR, LTE50..-A-TR (with centring cover) · Drive flange, drive shaft

Schaeffler Technologies

AL 1 | 601

Linear tables

Closed linear ball bearing guidance system With trapezoidal screw drive Drive Performance data

LTE

Performance data

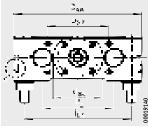
Designation	Drive									
Design A	Design B	Spindle			Spindle nut					
		Diameter d ₀	Pitch P	Mass moment of inertia	Design	Basic static load rating C0 ¹⁾				
		mm	mm	$kg \cdot cm^2$		Ν				
LTE16-100-A-TR	LTE16-100-B-TR	12	3	0,09	Single nut	630				
LTE20-130-A-TGT	LTE20-130-B-TGT	16	4	0,3	Single nut	2 250				
LTE25-160-A-TR	LTE25-160-B-TR	16	4	0,3	Single nut	2 250				
LTE30-180-A-TR	LTE30-180-B-TR	20	4	0,81	Single nut	2 550				
LILJ0-180-A-IK	LIL30-100-D-IK	20	8	0,81	Single nut	2 3 3 0				
LTE40-230-A-TR	LTE40-230-B-TR	24	5	1,65	Single nut	2 500				
L1E40-230-A-1K	L1L40-230-D-1K	24	10	1,05	Single nut	2 300				
LTE50-280-A-TR	LTE50-280-B-TR	32	6	5,45	Single nut	5 530				

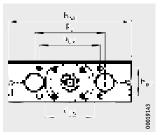
For further table values, see page 600 and page 601.

¹⁾ In the case of linear tables with trapezoidal screw drive, the maximum axial load is restricted by the spindle bearing arrangement. Please consult us regarding the loading of the trapezoidal screw drive.

602 | AL 1

Spindle bearing arrangement	Spindle bearing arrangement (locating bearing)					
Bearing	Basic static axial load rating C _{0a}	max.				
	Ν	Nm				
30/6-2RSR	630	1,5				
2×7200-2RS	2 250	3				
2×7200-2RS	2 250	3				
2×7201-2RS	2 550	10				
3303-2RS	2 500	5				
3304-2RS	5 530	5				




Schaeffler Technologies

AL 1 603

Linear tables

Closed linear ball bearing guidance system With ball screw drive

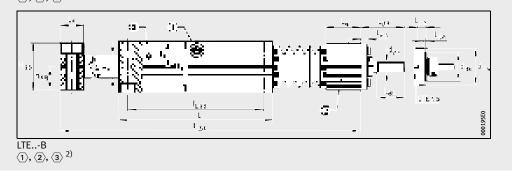
LTE..-A, LTE20..-A-KGT

LTE..-B, LTE20..-B-KGT

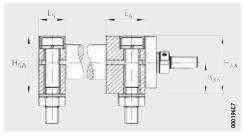
$\textbf{Dimension table} \cdot \text{Dimensions in mm}$

Designation		Dimensions				Mounti	ng dimei	nsions		
Design A	Design B	B_1,B_{4A},B_{4B}	Н	$\rm H_{1}, \rm H_{4A}, \rm H_{5A}$	L	b ₈₇	$arnothing d_{74}$	$arnothing d_{85}$	$arnothing d_{86}$	$\varnothing \mathrm{D}_7$
						±0,2		h7	g7	h7
LTE16-100-A-12	LTE16-100-B-12	100	38	36	100	44	38	5	24	16
LTE20-130-A-KGT	LTE20-130-B-KGT	130	48	46	130	62	-	9 ¹⁾	50	20
LTE25-160-A-16	LTE25-160-B-16	160	58	56	160	64	-	9 ¹⁾	52	25
LTE30-180-A-20	LTE30-180-B-20	180	67	64	180	68	-	10	60	30
LTE40-230-A-25	LTE40-230-B-25	230	84	80	230	68	-	16 ¹⁾	66	40
LTE40-230-A-32	LTE40-230-B-32	230	04					16	72	40
LTE50-280-A-25	LTE50-280-B-25	280	100	96	280	62		16 ¹⁾	66	50
LTE50-280-A-32	LTE50-280-B-32	200	100	20	200	02	_	16	72	50

For further table values on connection, see page 610 and page 611.


Calculation of length L_{tot} , see page 574.

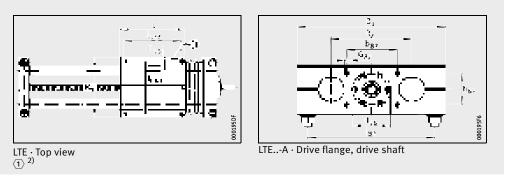
 $^{1)}\ \overline{\ }$ Thread witness marks may be present on the pin.


²⁾ (1) Lubrication nipple DIN 3405-A M6, see page 581.
 (2) Filling openings, see page 584.
 (3) Switching tag connectors on carriage unit, see page 584.

LTE..-A $\langle 1 \rangle$, $\langle 2 \rangle$, $\langle 3 \rangle$ ²⁾

LTE..-A, LTE20..-A-KGT · Detail

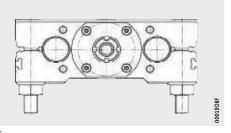
La


н.

000197DA

LTE..-B, LTE20..-B-KGT · Detail

G ₈₇	h ₁	h _{4B} , h _{5B}	h ₈₅	h ₈₇	H _{4B} , H _{5B}	j _{B4}	J _{B43} , J _{L43}	L_4	L ₅	L ₇₄	L ₈₅	L ₈₆	L ₈₈	Rz	T ₅₆
M×depth				±0,2											
M5×12	18	16	20	22	32	82	88	24	18	6,5	12	1,5	28,5	54	-
M6×15	23	21	25	30	42	108	115	29	20	-	23	8	37	72	3,75
M6×15	28	26	30	38	52	132	140	33	25	I	18	7	34,5	88	-
M6×15	32	29	35	44	58	150	158	38	25	-	18	9	36,5	96	-
M8×18	4.0	36	44	56	70	100	202	39	20		23	0	1.6	122	
WI0^10	40	36	44	50	72	190	202	42	30 –	-	25	9	46	122	-
M8×18	48		52	62	00	240	250	39	20		23	0	46	150	
WI8×18	48 4	44	52	62	88	240	250	42	30	-	23	9	46	152	-



Schaeffler Technologies

AL 1 605

Linear tables

Closed linear ball bearing guidance system With ball screw drive Drive Performance data

LTE

Performance data								
Designation		Drive						
Design A	Design B	Spindle			Spindle nut			
		Diameter d ₀	Pitch P	Mass moment of inertia	Design	Basic dynamic load rating C _a ¹⁾	Basic static load rating C ₀ ¹⁾	
		mm	mm	$kg \cdot cm^2$		N	Ν	
LTE16-100-A-12	LTE16-100-B-12	12	4	0,11	Single nut	4 900	6 600	
LIE10-100-A-12	LIE10-100-B-12	12	5	0,11	Single nut	4 400	6800	
LTE20-130-A-KGT	LTE20-130-B-KGT	16	5	0,313	Single nut, double nut	9 300	13100	
			10	0,321	Single nut	15 400	26500	
LTE25-160-A-16 LTE25-1	LTE25-160-B-16	16	5	0,313	Single nut,	9 300	13100	
LIL23-100-A-10	10 0,321 doub	double nut	15 400	26500				
	LTE30-180-B-20	20	5	0,846	Single nut, double nut	10 500	16600	
LTE30-180-A-20			10	0,846		12700	22100	
			20	0,883	Single nut	11 600	18400	
			50	0,845	Single nut	13 000	24600	
LTE40-230-A-25	LTE40-230-B-25	25	5	2,25	c:	12 300	22 500	
			10		Single nut, double nut	33 400	54 500	
LTE40-230-A-32	LTE40-230-B-32	32	20	6,43		29700	59800	
			40		Single nut	14 900	32 400	
LTE50-280-A-25	LTE50-280-B-25	25	5	2,25	Cinala mut	12 300	22 500	
			10		Single nut, double nut	33 400	54 500	
LTE50-280-A-32	LTE50-280-B-32	32	20	6,43	adubic nut	29700	59800	
			40		Single nut	14 900	32400	

For further table values, see page 604 and page 605.

¹⁾ Basic load ratings in accordance with DIN 69051. Due to the modified calculation algorithms in DIN 69051, the basic load ratings C_a and C_0 may differ in comparison with older data.

606 | AL 1

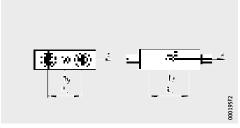
Spindle bearing arrangen	Spindle bearing arrangement (locating bearing)				
Bearing	Basic dynamic axial load rating C _a N	Basic static axial load rating C _{0a} N	max.		
ZKLN0624-2RS-PE	6 900	8 500	1,5		
ZKLN1034-2RS-PE	13 400	18 800	6		
ZKLN1034-2RS-PE	13 400	18 800	6		
ZKLN1545-2RS-PE	17 900	28 000	17		
ZKLN1747-2RS-PE	18 800	31 000	12		
ZKLN2052-2RS-PE	26 000	47 000	50		
ZKLN1747-2RS-PE	18 800	31 000	12		
ZKLN2052-2RS-PE	26 000	47 000	50		

Schaeffler Technologies

AL 1 | 607

Linear tables

Closed linear ball bearing guidance system Performance data


Load directions

Performance data								
Designation		Carriage unit guidar	Carriage unit guidance system (for each carriage unit) ¹⁾					
Design A	Design A Design B		Basic loa	d ratings (per carriag	e unit)		
			Load direction I Minimum compressive load		Load dire Minimum tensile lo	n Minimun		1
			dyn. C N	stat. C ₀ N	dyn. C N	stat. C ₀ N	dyn. C N	stat. C ₀ N
LTE08-65-A	LTE08-65-B	KB08-P	630	860	630	860	630	860
LTE12-85-A	LTE12-85-B	KB12-P	1 4 2 0	1 5 4 0	1 4 2 0	1 540	1 4 2 0	1 540
LTE16-100-A	LTE16-100-B							
LTE16-100-A-TR	LTE16-100-B-TR	KB16-P	1870	2120	1 870	2 1 2 0	1 870	2120
LTE16-100-A-12	LTE16-100-B-12							
LTE20-130-A-OA	LTE20-130-B-OA							
LTE20-130-A-TGT	LTE20-130-B-TGT	КВ20-Р	4140	4920	4 1 4 0	4 920	4140	4920
LTE20-130-A-KGT	LTE20-130-B-KGT							
LTE25-160-A	LTE25-160-B							
LTE25-160-A-TR	LTE25-160-B-TR	KB25-P	7 390	8 880	7 390	8 880	7 390	8880
LTE25-160-A-16	LTE25-160-B-16							
LTE30-180-A	LTE30-180-B				9 500	11 400		
LTE30-180-A-TR	LTE30-180-B-TR	КВ30-Р	9 500	11 400			9 500	11 400
LTE30-180-A-20	LTE30-180-B-20							
LTE40-230-A	LTE40-230-B							
LTE40-230-A-TR	LTE40-230-B-TR	KB40-P	15830	17 600	15 830	17 600	15830	17 600
LTE40-230-A-25	LTE40-230-B-25		19 090	1, 000	19 090	1, 000	19090	1,000
LTE40-230-A-32	LTE40-230-B-32							
LTE50-280-A	LTE50-280-B							
LTE50-280-A-TR	LTE50-280-B-TR	КВ50-Р	22 950	25 200	22 950	50 25 200	22 9 5 0	25 200
LTE50-280-A-25	LTE50-280-B-25		-2755		-2755		-2,555	
LTE50-280-A-32	LTE50-280-B-32							

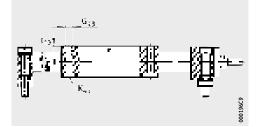
1) The deflection of the shafts must be taken into consideration. Design of linear ball bearing guidance systems: see Catalogue WF1.

²⁾ These values apply if load is evenly distributed over all four linear ball bearings. Values indicate single loads. These must be reduced for combined loads. For design criteria of the linear guidance system, see Catalogue WF1.

608 | AL 1

Mounting geometry of linear ball bearings

Permissible static moment ratings (per carriage unit) ²⁾ N S			Mounting geom Spacings betwe	etry een linear ball bearings
M _{0x per}	M _{Oy per}	M _{Oz per}	R _x	R _z
Nm	Nm	Nm	mm	mm
14	15	15	34	32
41	37,5	35	46	42
57	48	45	55,6	54
178	155	138	74,6	72
390	340	280	88,6	88
540	503	393	98,6	96
1 080	970	876	134	122
1 904	1736	1 510	163	152

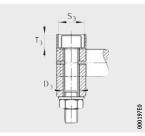


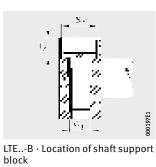
Schaeffler Technologies

AL 1 609

Linear tables

Closed linear ball bearing guidance system Location of carriage unit and shaft support blocks

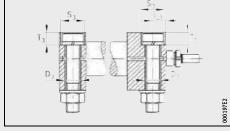


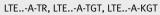

LTE..-A-TGT, LTE..-A-KGT Carriage unit · Fixing screws

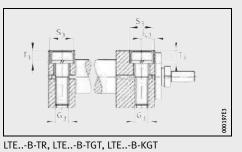
Dimension table							
Designation		Fixing screws					
Design A	Design B	Shaft support block A					
		D ₃	S ₃	T ₃	j _{L3}	_	
LTE08-65-A ¹⁾	LTE08-65-B ¹⁾	5,5	10	7,3	-		
LTE12-85-A ¹⁾	LTE12-85-B ¹⁾	6,6	11	8,4	-		
LTE16-100-A	LTE16-100-B	9	15	8	9		
LTE16-100-A-TR	LTE16-100-B-TR						
LTE16-100-A-12	LTE16-100-B-12						
LTE20-130-A-OA	LTE20-130-B-OA	11	18	10	10		
LTE20-130-A-TGT	LTE20-130-B-TGT						
LTE20-130-A-KGT	LTE20-130-B-KGT						
LTE25-160-A	LTE25-160-B	13,5	20	15,5	12,5		
LTE25-160-A-TR	LTE25-160-B-TR						
LTE25-160-A-16	LTE25-160-B-16						
LTE30-180-A	LTE30-180-B	13,5	20	15,5	12,5		
LTE30-180-A-TR	LTE30-180-B-TR						
LTE30-180-A-20	LTE30-180-B-20						
LTE40-230-A	LTE40-230-B	17,5	26	14,5	15		
LTE40-230-A-TR	LTE40-230-B-TR						
LTE40-230-A-25	LTE40-230-B-25						
LTE40-230-A-32	LTE40-230-B-32						
LTE50-280-A	LTE50-280-B	17,5	26	21	15		
LTE50-280-A-TR	LTE50-280-B-TR						
LTE50-280-A-25	LTE50-280-B-25						
LTE50-280-A-32	LTE50-280-B-32						

 $^{1)} \overline{\rm Not \ available \ with \ bellows.}$

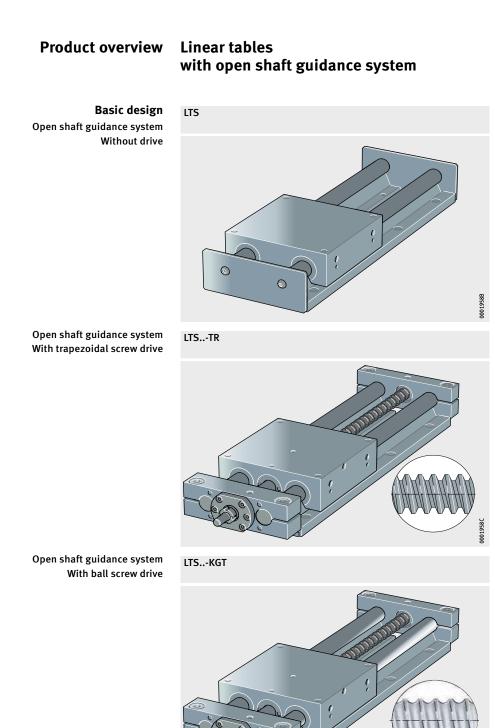
610 | AL 1






LTE..-A · Location of shaft support block

Shaft support block B For screws to DIN ISO 4762 G₄₃ M5 G_3 K₄₃ t43 M5 M4 11 M6 M5 Μ6 13 M8 M5 Μ6 13 M10 M6 M8 18 M8 M10 22 M12 M10 M12 M12 26 M16 M12 M16 34 M16 M12 M16 34



Schaeffler Technologies

AL 1 | 611

614 | AL 1

Features	Linear tables LTS are suitable for moderate loads and long stroke lengths. Linear tables LTS have higher load capacity in the compressive direction, due to the supported guidance shafts, than for example linear tables LTE with open shaft guidance system.
Basic design	 The basic design of linear tables LTS has no drive and comprises: a carriage unit made from aluminium alloy with four linear ball bearings KBO lubricated via two lubrication nipples on each side of the carriage unit two shaft and support rail units. The shaft and support rail
	units are composite units comprising an aluminium support rail and a shaft made from quenched and tempered steel to rolling bearing quality. The shafts are hardened and ground
	bellows fitted as optional.
	The linear ball bearings have an initial greasing, are sealed and can be relubricated.
With trapezoidal screw drive	Linear tables LTS with trapezoidal screw drive comprise the basic design plus the following additional components: a rolled trapezoidal screw spindle with a cylindrical bronze nut
	on the drive side: a locating bearing in a shaft support block; depending on the table size, the locating bearing comprises one double row angular contact ball bearing or two single row angular contact ball bearings
	 on the opposite side: a non-locating bearing in a shaft support block; the non-locating bearing comprises one single row ball bearing.
	The spindle support bearings are sealed and lubricated for life. The spindle nut has an initial greasing, is sealed and can be relubricated via a lubrication nipple in the carriage unit.

With ball screw drive	 Linear tables LTS with ball screw drive comprise the basic design plus the following additional components: a rolled ball screw spindle with a cylindrical single nut M. In the case of some pitch values, preloaded double nuts MM are also possible on the drive side: a locating bearing in a shaft support block; the locating bearing comprises a preloaded double row angular contact ball bearing ZKLN and a lubrication nipple on the opposite side: a non-locating bearing in a shaft support block; the non-locating bearing comprises a needle roller bearing NA and a lubrication nipple. The spindle support bearings and spindle nuts have an initial greasing, are sealed and can be relubricated. The spindle nuts can be relubricated via a lubrication nipple in the carriage unit. 				nut M. nuts MM ort block; row angular aft support roller n initial dle nuts can
With bellows	Linear tables LTS can be equipped with two sets of bellows, excluding LTS12.				ows,
	The bellows are attached by means of Velcro tape.				
	For the same stroke length, the total length of a linear table with bellows is greater than the total length of a linear table without bellows.				
Screw drive	see table depender	lle thread has a pitc As standard, single at on the pitch are u crew drive can be su	e nuts with ar sed. In the ca	n axial cleara ase of some p	nce bitch values,
Screw drive variants	Screw driv	e variants	Trapezoidal screw drive	Ball screw drive	Suffix
	Pitch	3 mm	•	-	3
		4 mm	•	•	4
		5 mm	•	•	5
		6 mm	•	-	6
		8 mm	•	-	8
		10 mm	•	•	10
		20 mm	-	•	20
		40 mm	-	•	40
	<u> </u>	50 mm	-	•	50

Single nut (cylindrical) Double nut (cylindrical)

Without drive (no spindle), with bellows

Schaeffler Technologies

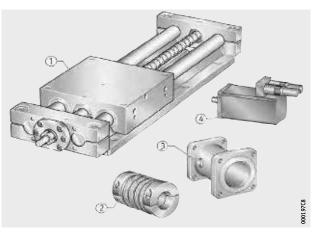
М

MM

OA

•

٠


Drive elements

Example: LTS ① Carriage unit ② Coupling KUP ③ Coupling housing KGEH ④ Servo motor MOT

Figure 1

Linear table

with open shaft guidance system Proven drive combinations For linear tables, Schaeffler also supplies components such as couplings, coupling housings, servo motors and servo controllers, *Figure 1*. The range is supplemented by servo controllers for effective drive and control of the motors.

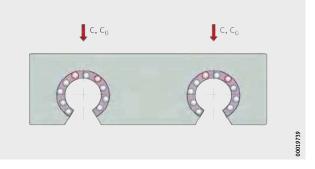
The combination of the necessary drive components for vertical and horizontal applications as a function of the mass to be moved, the acceleration and the travel velocity of carriage units is shown on page 681.

The bearing load in the linear tables must be checked; it is not taken into consideration in dimensioning of the motor.

For vertical mounting, motors with a holding brake must be used. If different loading and kinematic criteria apply, the least favourable operating conditions should be used for calculation of the drive motor and design of the gearbox, coupling and servo controller.

Special designs Special designs are available by agreement. Examples of these are linear tables LTS with

- guidance shafts and spindles with anti-corrosion protection
- bellows resistant to welding beads
- $\blacksquare\,$ a rolled ball screw spindle to accuracy class 25 μm per 300 mm
- a trapezoidal screw drive with a left hand thread
- special table designs according to customer requirements.


Design and safety guidelines

Main load direction of linear tables with linear ball bearings

The information on design and safety guidelines for linear tables LTS substantially matches the information on design and safety guidelines for linear tables LTE, see page 566. The following pages describe exclusively the differences between the linear tables LTS and the linear tables LTE.

The effective load rating of a linear ball bearing is dependent on the position of the load direction in relation to the position of the ball rows.

In the case of linear tables LTS, the linear ball bearings are fitted in a specific alignment. As a result, the basic load rating relating to the mounting position of the linear ball bearing is specifically defined, *Figure 2*.

Figure 2 Main load direction

LTS

The deflection of linear tables LTS is essentially dependent on the adjacent construction. It is not therefore possible to provide data or diagrams for the deflection.

Deflection

618 | AL 1

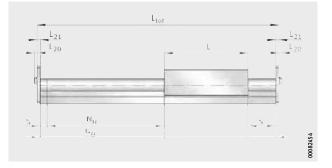
Length calculation of linear tables	The length calculation of linear tables is based on the required effective stroke length $N_{\rm H}$. The effective stroke length $N_{\rm H}$ must be increased by the addition of safety spacing values on both sides of the travel distance. It is only if bellows are present that the effective length $B_{\rm L}$ must be added.				
	The total length L_{tot} of the linear table is determined from the effective stroke length N_H , the safety spacings S, the carriage unit length L and the lengths of the end plates L_4 and L_5 .				
Parameters required for length calculation	$\begin{array}{cccc} G_{H} & mm & \\ Total stroke length & \\ N_{H} & mm & \\ Effective stroke length & \\ S & mm & \\ Safety spacing, see table, page 622 & \\ L & mm & \\ Length of carriage plate & \\ L_{tot} & mm & \\ Total length of linear table & \\ L_{4} & mm & \\ Length of end plate & \\ L_{5} & mm & \\ Length of end plate & \\ L_{20} & mm & \\ Screw head of end plate & \\ L_{21} & mm & \\ Thickness of end plate & \\ F_{BL} & - \\ Effective length factor according to linear table type \\ B_{L} & mm & \\ \end{array}$				
	Effective length of bellows B _B mm Length of bellows fastener.				
Total stroke length G _H	The total stroke length $\rm G_{H}$ is determined from the required effective stroke length effective stroke length $\rm N_{H}$ and the safety spacings S, which must correspond to at least the spindle pitch P.				
	$C_{\rm H} = N_{\rm H} + 2$ S				
Maximum lengths of linear tables	The maximum length of linear tables LTS without bellows is dependent on the size, the drive type and the maximum length of the bellows, see table, page 620. In the case of a total length $L_{tot} < 2 \cdot L + 30$, not all fixing holes in the support rail will be accessible, so please consult us.	0.00			
		- Ar			

Schaeffler Technologies

Bo

R-

Maximum lengths without bellows

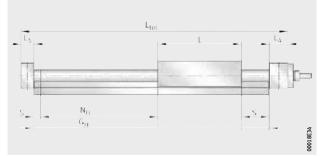

Designation	L _{tot}	Designation	L _{tot}	Designation	L _{tot}
	mm		mm		mm
LTS12	6 0 0 0	-	-	-	-
LTS16	6 0 0 0	LTS16TR	2 900	LTS16KGT	2 900
LTS20	6 0 0 0	LTS20TR	2 900	LTS20KGT	5850
LTS25	6 0 0 0	LTS25TR	2 900	LTS25KGT	5850
LTS30	6 0 0 0	LTS30TR	2 900	LTS30KGT	5850
LTS40	6 0 0 0	LTS40TR	2 900	LTS40KGT	5850
LTS50	6 0 0 0	LTS50TR	2 900	LTS50KGT	5850

Maximum lengths with bellows

Designation	L _{tot}	Designation	L _{tot}	Designation	L _{tot}
	mm		mm		mm
LTS12	-	-	-	-	-
LTS16	3 000	LTS16TR	2 900	LTS16KGT	2 900
LTS20	3 800	LTS20TR	2 900	LTS20KGT	3 800
LTS25	4 4 0 0	LTS25TR	2 900	LTS25KGT	4 400
LTS30	5 400	LTS30TR	2 900	LTS30KGT	5 400
LTS40	6 0 0 0	LTS40TR	2 900	LTS40KGT	5 600
LTS50	6 0 0 0	LTS50TR	2 900	LTS50KGT	5 600

Total length L_{tot}

The following equations are designed for one linear table. The parameters and their position can be found in *Figure 3* and *Figure 4* as well as in the table, page 622.


Figure 3 Length parameters for linear tables without drive

> Linear table without bellows LTS..-OA

> > Linear table with bellows LTS..-OA

 $L_{tot} = \tilde{\mathfrak{s}}_H + 1 + 2 \cdot L_2,$

Figure 4 Length parameters for linear tables with trapezoidal or ball screw drive

Linear table without bellows LTS..-TR, LTS..-KGT

> Linear table with bellows LTS..-TR, LTS..-KGT

Length parameters

Effective length of bellows

The effective length of bellows is the length occupied by the bellows in the fully compressed state. Calculation is based on the total stroke length G_H , *Figure 5*, equation and table, page 622.

00

0

ŝ

8_A

0008245D

 G_H $S+N_{H}+S$

Carriage unit against the right end stop
 Carriage unit against the left end stop

Figure 5 Effective length calculation

B_L mm Effective length of bellows

B_L

 $G_{\rm H} \cdot (F_{\rm DL} - t) + G_{\rm D}$

0.0

n_B

G_H Total stroke length mm

 $^{(1)}$

B_L

 F_{BL} — Effective length factor according to linear table type, see table, page 622 B_B mm Length of bellows fastener.

Calculation of hole pattern of shaft and support rail units

Parameters for hole pattern calculation Shaft and support rail units are supplied as standard with a symmetrical hole pattern. If a symmetrical hole pattern is present: $a_R = a_L$. In the following calculation, the values must not be less than the value $a_{R \min}$ ($a_{L \min}$).

 $\begin{array}{ll} a_R, a_L & mm \\ \text{Spacing on right and left between end of shaft and nearest hole centre point,} \\ \textit{Figure 6 and Figure 7} \\ a_R \min = a_L \min = 20 \text{ mm for linear tables without bellows} \\ a_R \min = a_L \min = 24 \text{ mm for linear tables with bellows} \\ \hline j_{L8} & mm \\ \text{Hole spacing, see dimension table} \\ t_{tot} & mm \\ \text{Total length of table} \end{array}$

The number of hole pitches n is the whole number equivalent to:

n – Number of hole pitches.

Hole pattern, without drive

$$n = \frac{L_{\rm pot} - 2 \cdot a_{\rm Pot} n}{i_{\rm D} a}$$

The spacing a_L between the end of the shaft and support rail units and the nearest hole centre point is calculated as follows:

 $\left|a_{k},a_{L}=0,5\cdot\left(L_{tot}+n\cdot\right)_{L0}\right)$

Figure 6 Spacings ${\rm a_R}$ and ${\rm a_L}$ on shaft and support rail units

Hole pattern, with drive

The number of hole pitches n is the whole number equivalent to:

$$r = \frac{L_{101} - L_4 - L_5 - 2 \cdot a_{\rm Pin(1)}}{L_{18}}$$

The spacing $a_{\rm R}$ and $a_{\rm L}$ between the end piece and the nearest hole centre point is calculated as follows:

$$a_{k}, a_{L} = 0.5 \cdot (L_{set} - L_{s} - L_{s} - n \cdot j_{Ls})$$

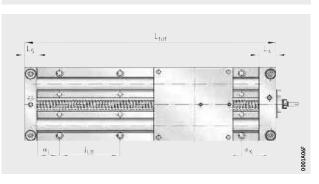


Figure 7 Spacings a_R and a_L on shaft and support rail units

1

In the case of a total length L $_2$ < 2 · L + 30, not all fixing holes in the support rail will be accessible, so please consult us.

Mass calculation

The total mass of a linear table is calculated from the mass of the table without a carriage unit and the carriage unit.

 $m_{\rm tet}=m_{\rm LNW}+m_{\rm RO}$

Values for mass calculation, linear table without drive

Designation	Mass			
	Carriage unit	Table without carriage unit		
	m _{LAW}	m _{BOL}		
	≈kg	≈kg		
LTS12	0,5	L _{tot} · 0,0032 + 0,5		
LTS16	0,8	$L_{tot} \cdot 0,0050 + 0,1$		
LTS20	1,6	L _{tot} · 0,007 6 + 0,14		
LTS25	3	L _{tot} · 0,0106 + 0,21		
LTS30	4,4	$L_{tot} \cdot 0,0150 + 0,27$		
LTS40	9,1	$L_{tot} \cdot 0,0248 + 0,42$		
LTS50	16,1	L _{tot} · 0,0378 + 0,62		

Values for mass calculation, linear table with screw drive

Designation	Mass			
	Carriage unit ¹⁾	Table without carriage unit		
	m _{LAW}	m _{BOL}		
	≈kg	≈kg		
LTS1612	0,8	$L_{tot} \cdot 0,0058 + 0,46$		
LTS2016	1,6	$L_{tot} \cdot 0,0089 + 0,94$		
LTS2516	2,9	$L_{tot} \cdot 0,0119 + 1,54$		
LTS3020	4,3	L _{tot} · 0,017 1 + 2,07		
LTS4025	8,8	$L_{tot} \cdot 0,0281 + 3,46$		
LTS4032	9,2	L _{tot} · 0,0305 + 3,64		
LTS5025	15,8	$L_{tot} \cdot 0,0411 + 4,94$		
LTS5032	16,3	L _{tot} · 0,043 5 + 5,16		

1) Including single or preloaded double nut.

Lubrication	The information on the lubrication of LTS matches the information on the lubrication of LTE, see page 579. The only differences are in the relubrication quantities and relubrication points.
Relubrication	Relubrication should be carried out wherever possible with several

Relubrication should be carried out wherever possible with several partial quantities at various times instead of the complete quantity at the time of the relubrication interval. Relubrication quantities, see table. The locating and non-locating bearing in the trapezoidal screw drive are lubricated for life.

Relubrication quantities per lubrication nipple

Desig-	Linear	do	Р	Trapezoid	alscrow	, drivo	Ball screw	drivo		
nation	ball bear- ing			Threaded nut	Locat- ing bear- ing	Non- locat- ing bear- ing	Threaded nut	Locat- ing bear- ing	Non- locat- ing bear- ing	
	≈g	mm	mm	≈g			≈g			
LTS12	0,2	-	-	-	-	-	-	-	-	
LTS16	0,3	12	3	-			- 0,2			
			4	3,5			-			
LTS20	0,4	16	5	-			0,5			
	-		10	-			1,3			
			4	3,5			-			
LTS25	1,1	16	5	-			0,5			
			10	-			1,3			
			4	6			-			
			5	-			0,6			
LTS30	1,3	20	10	-			3,1			
			20	-	Lubrica for life		3	Lubrica for life		
			50	-	ior inc		8,6	ioi iiic		
		24	5	10			-			
		25	5	-			0,8			
LTS40	2,5		10	-			3,1			
		32	20	-			6,8			
			40	-			9,5			
		25	5	-			0,8			
			6	15			-			
LTS50	5,5	32	10	-			3,1			
			20	-			6,8			
			40	-			9,5			

 $^{1)}\ \overline{\mbox{If relubrication is required due to the application, please consult us.}$

3

3

Relubrication points

The linear ball bearings are greased in pairs in each case via a lateral lubrication nipple in the carriage unit. The spindle nuts are supplied with lubricant via a separate lubrication nipple. The spindle bearing arrangement of the ball screw drive in the shaft support blocks is supplied in each case from above via a lubrication nipple, see *Figure 8*, table, *Figure 9*, page 629, and *Figure 10*, page 629.

LTS

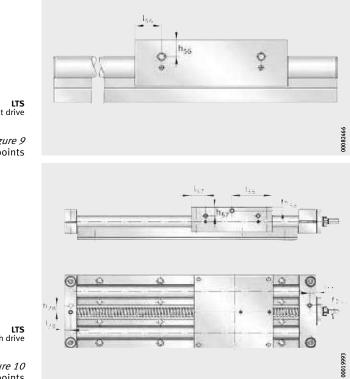
1 Relubrication point for locating bearing (2) Relubrication point for non-locating bearing 3 Lubrication points for linear ball bearings (4) Relubrication point for spindle nut

Figure 8 Lubrication points on linear table

Position of relubrication points

00019593 3 During lubrication of actuators, all lubrication points on one longitudinal side of a carriage unit must always be provided with lubricant.

(4)


Desig-	Moun	iting o	limens	ions									
nation	Type NIP	With drive											
		2×fo linea bear	ar ball	1×for spind		2×for linear ball bearings				Non- locating bearing			
		h ₅₆	l ₅₆	h ₅₆	l ₅₆	h ₅₇	l ₅₇	b ₇₇	l ₇₇	b ₇₈	l ₇₈		
		mm	mm	mm	mm	mm	mm	mm	mm	mm	mm		
LTS12	A1	10	16	-									
LTS16		14	18	5,5	40	14	18	9,5	10,5	9	9		
LTS20		15	22,5	5	53,15	15	22,5	12	10	-	10		
LTS25	A2	15	29	6	53,15	20	29	10	16	I	12,5		
LTS30		20	34	6	56,4 ²⁾	20	34	14	14,5	-	12,5		
LTS40		30	40	8	56,4 ³⁾	30	40	13 ⁴⁾	17 ⁵⁾	-	15		
LTS50	A3	40	50	10	56,4 ³⁾	40	50	-	17 ⁵⁾	-	15		

 $^{1)}$ In the case of a spindle 2020 and 2050, $\mathrm{l_{56}}$ = 52 mm.

²⁾ In the case of a spindle 3210 and 3220, l_{56} = 86 mm. In the case of a spindle 3240, l_{56} = 69 mm.

³⁾ In the case of a spindle size 25, $b_{77} = 0$ mm.

 $^{\rm 4)}\,$ In the case of a spindle size 25, l_{77} = 15,5 mm.

LTS without drive

Figure 9 Lubrication points

LTS with drive

Figure 10 Position of relubrication points

Maximum permissible spindle speed

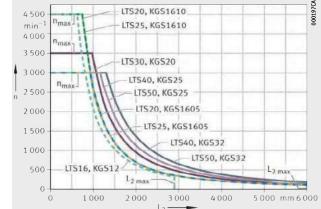
Screw drives must not be allowed to run in the critical speed range. The critical speed is essentially dependent on the following factors:

- spindle length
- spindle diameter
- spindle bearing arrangement
- mounting method.

The carriage unit travel velocity is calculated as follows:

$$\nabla = \frac{\mathbf{n} \cdot \mathbf{P}}{66 \cdot 1.060}$$

v m/s Carriage unit velocity



mm

r Spindle pitch.

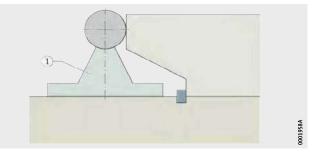
The carriage unit velocity v is determined from the spindle speed n and the spindle pitch P. Note the factors influencing the carriage unit velocity, such as maximum values, see page 557.

Diagram The diagram shows the relationship for individual series and sizes between the critical speed and the spindle length, *Figure 11*. The diagram takes account of the effective length B_L of the bellows cover. Definition of the effective length, see page 623.

LTS16 LTS20 LTS25 LTS30 LTS40 LTS50

 n_{max} = maximum speed n = spindle speed L_2 = length of shaft and support rail unit

Figure 11


Maximum permissible spindle speed without spindle supports

Mounting requirements

The information on the influences of the adjacent construction of LTS matches the information on the influences of the adjacent construction of LTE, see page 585. The information on the mounting position and mounting arrangement of LTS matches the information on the mounting position and mounting arrangement of LTE, see page 586. At this point, only deviating or additional information will be covered.

Overlong tables

In the case of very long linear tables LTS, one support rail must first be aligned by means of the shaft and screw mounted in stages. The support rail arranged in parallel is aligned by moving the carriage, thus ensuring the centre spacing of the support rail. In the case of parallel support rails, the linear table must be located by an additional form fit on the adjacent construction. The datum support rail should be clamped against a stop, *Figure 12*.

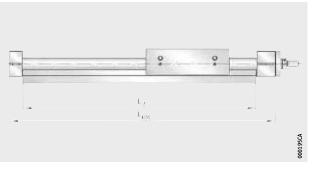

1 Shaft and support rail unit

Figure 12 Alignment of a shaft and support rail unit by means of the shaft

Accuracy Length tolerances

The length tolerances for linear tables can be taken from *Figure 13* and the table.

 L_2 = length of shaft and support rail unit L_{tot} = total length

Figure 13 Length tolerances

Tolerances

Total length L _{tot} of linear tables LTS	Tolerance
mm	mm
L_{tot} < 400	±0,5
$400 \leq L_{tot} < 1000$	±0,8
$1000 \leq L_{tot} < 2000$	±1,2
$2000 \leq L_{tot} < 4000$	±2
$4000 {} \leq L_{tot} {} < {} 5850$	±3

Accuracy of the screw drive

Linear tables with trapezoidal screw drive are only available with a single nut with clearance, see table. The pitch accuracy is dependent on the size, see table.

Linear tables with ball screw drive are available with a single nut with clearance, see table, page 633. Where higher accuracy requirements are present, preloaded (clearance-free) double nuts are possible for many pitch values, see table, page 633.

·

In the case of standard linear tables with ball screw drive, the nut unit (double nut) can only be preloaded clearance-free if the spindle pitch P is less than the nominal diameter d_0 of the spindle.

Designation	Spindle	Spindle nut					
	Nominal diameter	Pitch		Single nut			
	d ₀ mm	P mm	Accuracy μm each 300 mm	Suffix	Axial clearance mm		
LTS16	12	3	300				
LTS20	16	4	50				
LTS25	16	4	50				
LTS30	20	4 50			0 4 40 0 5		
	20	8	200	M	0,4 to 0,5		
LTS40	24	5	50				
	24	10	200				
LTS50	32	6	50				

Ball screw drive

Desig-	Spind	e		Spindle nut						
nation	\varnothingd_0	Р	Pitch	Single I	nut	Double	nut			
	mm	mm	accuracy μm each 300 mm	Suffix	Axial clearance mm	Suffix	Axial clearance			
LTS16	12	4	50	М	0,05	-	-			
LTS20	16	5	50	м	0.05	MM	Preloaded			
L1520	16	10	50	IVI	0,05	-	-			
LTS25	16	5	50	м	0,05	мм	Preloaded			
LIJZJ	10	10	50	141	0,05	101101	Fieldaded			
		5				мм	Preloaded			
LTS30	20	10	50	м	0,05		Tretouded			
21390		20			0,05	_	_			
		50								
	25	5								
LTS40		10	50	м	0,05	мм	Preloaded			
21010	32	20	50		0,05					
		50				-	-			
	25	5								
LTS50		10	50	м	0,05	мм	Preloaded			
	32	20			-,					
		50				-	-			

Ordering example, ordering designation

Available designs

Available designs of linear tables LTS, see table.

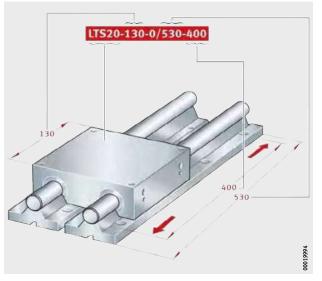
Design	Linear table with open linear ball bearing guid	Linear table with open linear ball bearing guidance system						
Size	Size code							
Carriage unit length	Length	L	mm					
No drive type	Without drive	٠						
Type of drive	Trapezoidal screw drive	TR						
Spindle dimensions	Trapezoidal screw diameter	d ₀	mm					
	Spindle pitch	Р	mm					
Nut design	Single nut	٠						
Type of drive	Ball screw drive	٠						
Spindle dimensions	Ball screw diameter	d ₀	mm					
	Spindle pitch	Р	mm					
Nut design	Single nut	М						
	Double nut	MM						
Cover optional	Without bellows	0						
	With bellows	1						
Lengths	Total length	L _{tot}	mm					
	Total stroke length	G _H	mm					

• Standard scope of delivery.

■ Design not available.

Desig	nation	and su	ffixes																
LTS																			
12	16		20		25		30				40				50				
85	100		130		160		180				230				280	280			
٠	•		•		•		•			•				•					
	TR		TR	TR TR		R TR			TR	TR				TR					
	12		16	16		16 20		24				32							
	3		4	4		4		4 8		5	5 10		6						
	•		•		•		• •			• •			•		•				
	•		•		•		•			•				•					
	12		16		16	16 20		20			25	32			25 32				
	04	05	05	10	05	10	05	10	20	50	05	10	20	40	05	10	20	40	
	М	М	М	М	Μ	М	Μ	М	Μ	М	М	М	М	М	Μ	М	М	М	
			MM		MM	MM	MM	MM			MM	MM	MM		MM	MM	MM		
•	0		0		0		0				0	0				0			
	1		1		1		1				1				1				

to be calculated from effective stroke length, see page 619

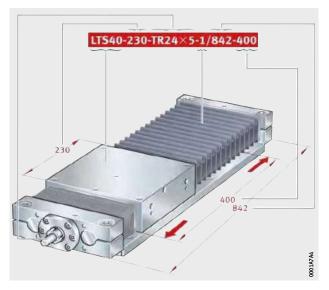

Schaeffler Technologies

AL 1 | 635

Open shaft guidance system, without drive

Linear table with open linear ball bearing guidance system Size code	LTS 20
Carriage plate length L	130 mm
Without drive	-
Bellows (with = 1, without = 0)	0
Total length L _{tot}	530 mm
Total stroke length G _H	400 mm
LTS20-130-0/530-400, Figure 14	

Ordering designation


Figure 14 Ordering designation

Open shaft guidance system, with trapezoidal screw drive

Linear table with open linear ball bearing guidance system Size code	LTS 40
Carriage plate length L	230 mm
Trapezoidal screw drive, $d_0 = 24$ mm, pitch P = 5 mm	TR24×5
Bellows (with = 1, without = 0)	1
Total length L _{tot}	842 mm
Total stroke length G _H	400 mm

Ordering designation

n **LTS40-230-TR24**×**5-1/842-400**, *Figure 15*

Figure 15 Ordering designation

Open shaft guidance system, with ball screw drive

Linear table	
with open linear ball bearing guidance system	LTS
Size code	30
Carriage plate length L	180 mm
Ball screw drive, d ₀ = 20 mm, pitch P = 5 mm	2005
Nut (cylindrical, single nut)	М
Bellows (with = 1, without = 0)	1
Total length L _{tot}	780 mm
Total stroke length G _H	400 mm
LTS30-180-2005-M-1/780-400, Figure 16	

Ordering designation

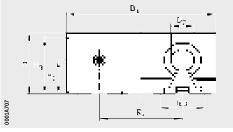

. . .

Figure 16 Ordering designation

Linear tables

Open linear ball bearing guidance system . Without drive

 $\text{LTS}\cdot\text{With bellows}$

$\textbf{Dimension table} \cdot \text{Dimensions in mm}$

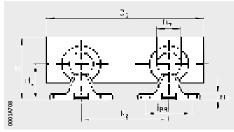
Designation	Dimensions	5		Mounting	Mounting dimensions					
	B ₁	Н	L	$\emptyset D_7$	h ₁	H ₁	H ₂			
				h7						
LTS12-85 ¹⁾	85	40	85	12	18	30	22			
LTS16-100	100	48	100	16	22	35,5	26			
LTS20-130	130	57	130	20	25	42	32			
LTS25-160	160	66	160	25	30	51	36			
LTS30-180	180	77	180	30	35	60	42			
LTS40-230	230	95	230	40	45	77	50			
LTS50-280	280	115	280	50	55	93	60			

For further table values, see page 652.

Calculation of length L_{tot} , see page 619.

Calculation of effective length B_{L} of bellows, see page 623.

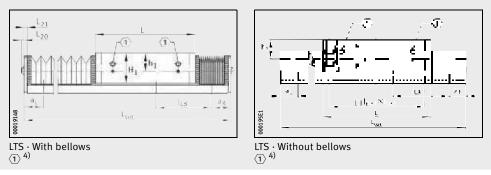
 $^{1)}\,\overline{\rm Not}\, available$ with bellows.


²⁾ Only valid for standard bellows.

³⁾ Location of shaft and support rail units: Shaft and support rail units are supplied as standard with a symmetrical hole pattern. With a symmetrical hole pattern, $a_L = a_R$.

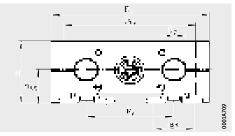
Calculation of hole pattern, see page 624.

⁴⁾ (1) Lubrication nipple NIP, see page 627.


640 | **AL 1**

 $\text{LTS} \cdot \text{Without bellows}$

H ₃ ²⁾	H ₇	j _{B8}	j _{L8} 3)	J _{B43} , J _{L43}	L ₂₀	L ₂₁	Rz
-	5	29	75	73	-	4	42
42	5	33	100	88	3,3	4	54
53	6	37	100	115	3,3	4	72
62	6	42	120	140	3,3	4	88
71	7	51	150	158	4,4	4	96
86	8	55	200	202	4,4	4	122
104	9	63	200	250	4,4	4	152
	•						



Schaeffler Technologies

AL 1 | 641

Linear tables

Open linear ball bearing guidance system With trapezoidal screw drive

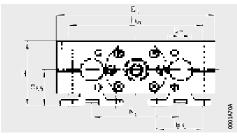
LTS16 to LTS30 \cdot With bellows

$\textbf{Dimension table} \cdot \text{Dimensions in mm}$

Designation Dimensions					Mounting dimensions									
	Β ₁	н	L	b ₈₇	$arnothing d_{85}$	$arnothing d_{86}$	$\emptyset D_7$	$arnothing$ D_{86}	G ₄ , G ₅	$G_{87} \times t_{87}$	h ₁	h ₅		
				±0,2	h7	g7	h7	H7		M imes depth				
LTS16-100-TR	100	48	100	44	5	-	16	17	M8	M5×12	22	16		
LTS20-130-TR	130	57	130	62	9 ¹⁾	-	20	30	M10	M6×15	25	21		
LTS25-160-TR	160	66	160	64	9 ¹⁾	-	25	30	M12	M6×15	30	26		
LTS30-180-TR	180	77	180	68	10	-	30	32	M12	M6×15	35	29		
LTS40-230-TR	230	95	230	68	16 ¹⁾	66	40	-	M16	M8×18	45	36		
LTS50-280-TR	280	115	280	62	16	72	50	-	M16	M8×18	55	44		

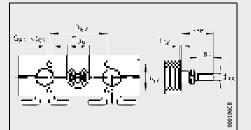
For further table values, see page 652.

Calculation of length $L_{\mbox{tot}}$, see page 619.


Calculation of effective length ${\rm B}_{\rm L}$ of bellows, see page 623.

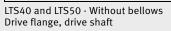
¹⁾ Thread witness marks may be present on the pin.

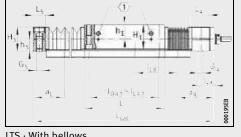
²⁾ Location of shaft and support rail units: Shaft and support rail units are supplied as standard with a symmetrical hole pattern. With a symmetrical hole pattern, $a_L = a_R$.


Calculation of hole pattern, see page 624.

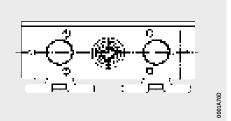
 $^{3)}$ (1) Lubrication nipple NIP, see page 627.

LTS40 and LTS50 \cdot Without bellows


h ₈₅	h ₈₇ ±0,2	H ₁	H ₅	j _{B4}	j _{B8}	j _{l4}	j _{L8} 2)	J _{B43} , J _{L43}	L ₄	L ₅	L ₈₅	L ₈₆	L ₈₈	Rz	T ₈₆
26	22	35,5	32	82	33	9	100	88	24	18	12	-	28,5	54	3
32	30	42	42	108	37	10	100	115	29	20	18	-	37	72	2,8
36	38	51	52	132	42	12,5	120	140	33	25	18	-	34,5	88	3,3
42	44	60	58	150	51	12,5	150	158	38	25	18	-	36,5	96	2,8
50	56	77	72	190	55	15	200	202	39	30	23	9,4	46	122	-
60	62	93	88	240	63	15	200	250	42	30	23	9,4	46	152	-

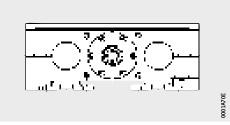


LTS16 to LTS30 · Without bellows Drive flange, drive shaft


AL 1 643

Linear tables

Open linear ball bearing guidance system With trapezoidal screw drive Drive Performance data


LTS16 to LTS30 \cdot Without bellows

Performance data Designation Drive Spindle Spindle nut Diameter Mass Pitch Design Basic static moment of inertia load rating d₀ P $kg \cdot cm^2$ Ν mm mm LTS16-100-TR 12 3 0,094 Single nut 630 LTS20-130-TR Single nut 2 2 5 0 16 4 0,3 LTS25-160-TR 16 4 0,3 Single nut 2 2 5 0 LTS30-180-TR 4 Single nut 2 5 5 0 20 0,81 8 LTS40-230-TR 5 24 1,65 Single nut 2 500 10 LTS50-280-TR 32 5,45 Single nut 5 5 3 0 6

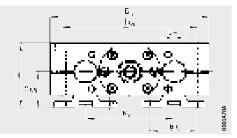
For further table values, see page 642 and page 643.

In the case of linear tables with trapezoidal screw drive, the maximum axial load is restricted by the spindle bearing arrangement. Please consult us regarding the loading of the trapezoidal screw drive.

644 | AL 1

LTS40 and LTS50 \cdot With bellows

Spindle bearing arrangement	(locating bearing)	Drive torque on drive stud max.
Bearing	ing Basic static axial load rating C _{0a}	
	N	Nm
30/6-2RS	630	1,5
2×7200-2RS	2 250	3
2×7200-2RS	2 250	3
2×7201-2RS	2 550	10
3303-2RS	2 500	5
3304-2RS	5 5 3 0	5



Schaeffler Technologies

AL 1 645

Linear tables

Open linear ball bearing guidance system With ball screw drive

 $\text{LTS} \cdot \text{Without bellows}$

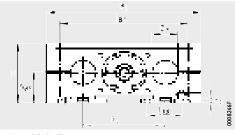
Dimension table · Dimensions in mm

Designation Dimensions			Mounti	Mounting dimensions								
	B ₁	Н	L	b ₈₇	$igotimes d_{74}$	$arnothing d_{85}$	$arnothing d_{86}$	$\emptyset D_7$	G ₄ , G ₅	$G_{87} \times t_{87}$	h ₁	h ₅
				±0,2		h7	g7	h7		M imes depth		
LTS16-100-12	100	48	100	44	38	5	24	16	M8	M5×12	22	16
LTS20-130-16	130	57	130	62	-	9 ¹⁾	50	20	M10	M6×15	25	21
LTS25-160-16	160	66	160	64	-	9 ¹⁾	52	25	M12	M6×15	30	26
LTS30-180-20	180	77	180	68	-	10	60	30	M12	M6×15	35	29
LTS40-230-25	230	95	230	68		16 ¹⁾	66	40	M16	M8×18	45	
LTS40-230-32	230	95	250	00	-	16	72	40	1110	100 ~ 10	45	36
LTS50-280-25	280	115	280	62		16 ¹⁾	66	50	M16	M8×18	55	44
LTS50-280-32	200	115	260	62	-	16	72	50	W10	10/0 / 18		

For further table values, see page 652.

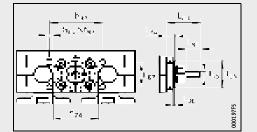
Calculation of length L_{tot} , see page 619.

Calculation of effective length B_L of bellows, see page 623.

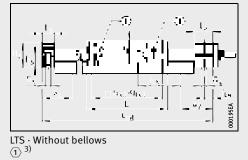

¹⁾ Thread witness marks may be present on the pin.

²⁾ Location of shaft and support rail units: Shaft and support rail units are supplied as standard with a symmetrical hole pattern. With a symmetrical hole pattern, $a_L = a_R$.

Calculation of hole pattern, see page 624.

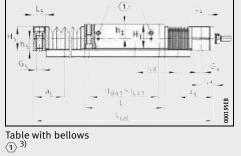

 $^{3)}$ (1) Lubrication nipple NIP, see page 627.

646 | AL 1



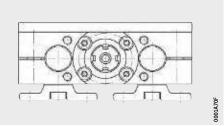
 $LTS \cdot With bellows$

h ₈₅	h ₈₇	H ₁	H ₅	j _{B4}	j _{B8}	j _{L4}	j _{L8} 2)	J _{B43} , J _{L43}	L ₄	L ₅	L ₇₄	L ₈₅	L ₈₆	L ₈₈	Rz
	±0,2														
26	22	35,5	32	82	33	9	100	88	24	18	6,5	28,5	1,5	28,5	54
32	30	42	42	108	37	10	100	115	29	20	-	37	8	37	72
36	38	51	52	132	42	12,5	120	140	33	25	-	34,5	7	34,5	88
42	44	60	58	150	51	12,5	150	158	38	25	-	36,5	9,4	36,5	96
50	56	77	72	190	55	15	200	202	39	30	_	46	9,4	46	122
50	50	<i>''</i>	12	170	,,	15	200	202	42	50		40	7,4	40	122
60	62	93	88	240	63	15	200	250	39	30	_	46	9,4	46	152
00	02	,,,	00	240	05	19	200	250	42	50		40	<i>,</i> ,,	40	192



LTS20 · Without bellows Drive flange, drive shaft

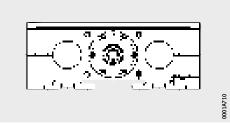
LTS20 to LTS50 · With bellows Drive flange, drive shaft



AL 1 | 647

Linear tables

Open linear ball bearing guidance system With ball screw drive Drive Performance data


 $LTS16 \cdot Without bellows$

Performance data									
Designation	Drive								
	Spindle			Basic load ratin	Basic load ratings of spindle nut				
	Diameter d ₀	eter Pitch Mass P moment of inertia		Design	Basic dynamic load rating Ca ¹⁾	Basic static load rating $C_0^{(1)}$			
	mm	mm	$kg \cdot cm^2$		Ν	Ν			
LTS16-100-12	12	4	0,11	Single nut	4 900	6 600			
	12	5	0,11	Single nut	4 400	6 800			
LTS20-130-16	16	5	0,313	Single nut, double nut	9 300	13 100			
		10	0,321	Single nut	15 400	26 500			
LTS25-160-16	16	5	0,313	Single nut,	9 300	13 100			
11323-100-10	10	10	0,321	double nut	15 400	26 500			
		5	0,846	Single nut, double nut	10 500	16 600			
LTS30-180-20	20	10	0,846	double nut	12700	22100			
		20	0,883	Single nut	11 600	18 400			
		50	0,845	Single nut	13 000	24 600			
LTS40-230-25	25	5	2,25		12 300	22 500			
		10		Single nut, double nut	33 400	54 500			
LTS40-230-32	32	20	6,43	double nut	29700	59 800			
		40		Single nut	14 900	32 400			
LTS50-280-25	25	5	2,25		12 300	22 500			
		10		Single nut, double nut	33 400	54 500			
LTS50-280-32	32	20	6,43	Sousie nut	29700	59 800			
		40		Single nut	14 900	32 400			

For further table values, see page 646 and page 647.

¹⁾ Basic load ratings in accordance with DIN 69051. Due to the modified calculation algorithms in DIN 69051, the basic load ratings C_a and C_0 may differ in comparison with older data.

648 | AL 1

LTS20 to LTS50 \cdot With bellows

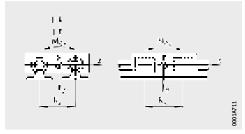
Spindle bearing arrangem	ent (locating bearing)		Drive torque on drive stu		
Bearing	Basic dynamic axial load rating C _a N	Basic static axial load rating C _{Oa} N	max. Nm		
ZKLN0624.2RS-PE	6 900	8 500	1,5		
ZKLN1034.2RS-PE	13400	18 800	6		
ZKLN1034.2RS-PE	13400	18 800	6		
ZKLN1545.2RS-PE	17 900	28 000	17		
ZKLN1747.2RS-PE	18800	31 000	12		
ZKLN2052.2RS-PE	26 000	47 000	50		
ZKLN1747.2RS-PE	18800	31 000	12		
ZKLN2052.2RS-PE	26 000	47 000	50		

Schaeffler Technologies

AL 1 | 649

Linear tables

Open linear ball bearing guidance system Performance data


Load directions

Performance data									
Designation	Carriage unit guidan	ce system (for	each carriage	unit)1)					
	Linear ball bearing	Basic load ratings (per carriage unit)							
		Load directio Compressive		Load direction II Tensile load		Load directio Lateral load	n III		
		dyn.	stat.	dyn.	stat.	dyn.	stat.		
		С	C ₀	С	C ₀	С	C ₀		
		N	N	N	N	N	N		
LTS12-85	KB012-PP-AS	1 580	1 780	680	840	1715	2 320		
LTS16-100	-								
LTS16-100-TR	KB016-PP-AS	2 1 1 0	2 480	880	1 1 4 0	2 240	2 900		
LTS16-100-12									
LTS20-130									
LTS20-130-TR	KBO20-PP-AS	4 2 2 0	5120	2 500	3 280	3 880	4 600		
LTS20-130-16									
LTS25-160									
LTS25-160-TR	KBO25-PP-AS	7 520	9 200	4 5 5 0	6 000	6930	8 200		
LTS25-160-16									
LTS30-180									
LTS30-180-TR	KBO30-PP-AS	9760	12000	5 930	7 600	8 970	10 700		
LTS30-180-20									
LTS40-230									
LTS40-230-TR	KBO40-PP-AS	16100	18 400	9760	12 500	14910	16 800		
LTS40-230-25	10040-11-743	10100	10400	2700	12 300	14 / 10	10000		
LTS40-230-32									
LTS50-280									
LTS50-280-TR	KB050-PP-AS	23 480	26 400	14 200	16800	20.220	22,600		
LTS50-280-25	KDUSU-PP-AS	23480	20400	14 200	10 800	800 30 320	22 600		
LTS50-280-32]								

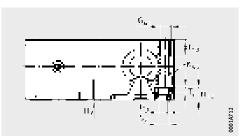
1) Design of linear ball bearing guidance systems: see Catalogue WF1, Shaft Guidance Systems.

²⁷ These values apply if load is evenly distributed over all four linear ball bearings. The values are single loads and apply when the shaft and support rail units are fully supported. These must be reduced for combined loads. For design criteria of the linear guidance system, see Catalogue WF1, Shaft Guidance Systems.

650 | AL 1

Mounting geometry of linear ball bearings

Permissible stat	ic moment ratings (per ca	Mounting geometry Spacings between linear ball bearings			
M _{0x per}	M _{Oy per}	M _{Oz per}	R _x	R _z	
Nm	Nm	Nm	mm	mm	
23	32	21	46	42	
29	50	32	55,6	54	
109	130	100	74,6	72	
240	312	240	88,6	88	
340	450	345	98,6	96	
670	960	730	134	122	
1 180	1 580	1 250	163	152	

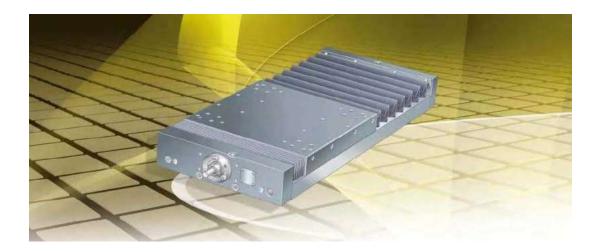


Schaeffler Technologies

AL 1 651

Linear tables

Open linear ball bearing guidance system Mounting of table and shaft and support rail unit



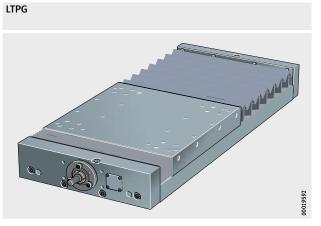
 $\mbox{LTS}\cdot\mbox{With}$ bellows, detail of fixing screws

Dimension table · Dimensi	Dimension table · Dimensions in mm								
Designation	Fixing screv	VS		Mounting dimensions					
		Shaft and support rail units according to DIN 6912-8.8			it o DIN ISO 47	62-8.8			
	D ₈	S ₈	T ₈	K ₄₃	G ₄₃	t ₄₃	H ₇	H ₁₂	
LTS12-85	4,5	-	-	M5	M6	13	5	-	
LTS16-100									
LTS16-100-TR	5,5	10	5,6	M5	M6	13	5	11,5	
LTS16-100-12									
LTS20-130							6	13	
LTS20-130-TR	6,6	11	6,1	M6	M8	18			
LTS20-130-16									
LTS25-160			6,1	M8	M10			14	
LTS25-160-TR	6,6	11				22	6		
LTS25-160-16									
LTS30-180				M10	M12	26	7	16	
LTS30-180-TR	9	15	7,5						
LTS30-180-20									
LTS40-230									
LTS40-230-TR	9	15	7,5	M12	M16	34	8	17	
LTS40-230-25	9	15	7,5	1112	MID	54	0	17	
LTS40-230-32									
LTS50-280									
LTS50-280-TR	11	17	9,5	M12	M16	34	0	21	
LTS50-280-25	11	1/	9,0	11112	10110		9		
LTS50-280-32]								

652 AL 1

With linear recirculating ball bearing and guideway assemblies

Product overview High precision linear tables


Aluminium design LTP

With linear recirculating ball bearing and guideway assemblies With ball screw drive

Cast iron design

With linear recirculating ball bearing and guideway assemblies With ball screw drive

Features

5 High precision linear tables LTP and LTPG are particularly suitable, due to their construction and high guidance accuracy, for the precise positioning of moderate and high loads. These tables are supplied assembled.

Aluminium design

High precision linear tables LTP

- High precision linear tables LTP comprise:
- a base plate made from aluminium
- two high precision two-row linear recirculating ball bearing and guideway assemblies KUE or, by agreement, two four-row linear recirculating ball bearing and guideway assemblies KUVE in the case of LTP15 or two six-row linear recirculating ball bearing and guideway assemblies KUSE in the case of LTP25 with two carriages per side. The linear recirculating ball bearing and guideway assemblies are preloaded clearance-free and run without stick-slip
- a carriage unit made from aluminium with a central lubrication system for relubricating the carriages of the linear recirculating ball bearing and guideway assemblies and the spindle nuts
- a rolled ball screw spindle with a single flanged nut F. In the case of some pitch values, double flanged nuts FM are possible. A double nut FM comprises a single flanged nut paired with a cylindrical single nut. Double nuts are preloaded
- a locating bearing housing made from aluminium alloy with a preloaded double row angular contact ball bearing ZKLF and a lubrication nipple
- a non-locating bearing housing made from aluminium alloy with a needle roller bearing NA and a lubrication nipple.

The spindle support bearings, carriages and spindle nuts have an initial greasing, are sealed and can be relubricated.

Cast iron design

High precision linear tables LTPG

High precision linear tables LTPG comprise a base plate, a carriage unit and a bearing housing made from cast iron. They are suitable for applications requiring increased accuracy and have good vibration behaviour. High precision linear tables LTPG differ from linear tables LTP in that they have:

- a base plate made from cast iron with ground seating and locating surfaces for the guideways
- two high precision six-row linear ball bearing and guideway assemblies KUSE with two carriages per side
- a carriage unit made from cast iron with a ground surface and seating surfaces for the carriages
- a locating bearing housing made from cast iron
- a non-locating bearing housing made from cast iron.

With bellows High precision linear tables LTP and LTPG can be equipped with two sets of bellows. The bellows are attached by means of screws.

For the same stroke length, the total length of a linear table with bellows is greater than the total length of a linear table without bellows.

Screw drive The spindle thread has a pitch value of between 5 mm and 50 mm, see table. As standard, single flanged nuts with an axial clearance dependent on the pitch are used. In the case of some pitch values, the ball screw drive can be supplied with preloaded double nuts.

Screw drive variants	Screw dri	ve variants	Suffix		
	Pitch	5 mm	5		
		10 mm	10		
		20 mm	20		
		40 mm	40		
		50 mm	50		
Drivo alamanta			igh provision linear tables ITD		

Drive elements	The information on drive elements in high precision linear tables LIP
	and LTPG matches the information on drive elements in linear
	tables LTE, see page 565.

Special designs

- Special designs of high precision linear tables, including the following, are available by agreement: with a rolled or ground ball screw spindle with an accuracy of 25 $\mu m/300~mm$
- with anti-corrosion coating of the spindle and/or linear recirculating ball bearing and guideway assemblies
- with special bellows, for example in a version resistant to welding beads
- with a trapezoidal screw drive
- with special hole patterns on the carriage unit and base plate in accordance with customer requirements.

658 | AL 1

Design and safety guidelines	The design and safety guidelines for high precision linear tables LTP and LTPG essentially match the design and safety guidelines for linear tables LTE, see page 566. The following pages describe exclusively the differences between the high precision linear tables LTP and LTPG and the linear tables LTE.	
Deflection	High precision linear tables LTP and LTPG are essentially dependent on the adjacent construction. It is not therefore possible to provide data or diagrams for the deflection.	
Length calculation of linear tables	The length calculation of linear tables is based on the required effective stroke length N_H . The effective stroke length N_H must be increased by the addition of safety spacing values on both sides of the travel distance. It is only if bellows are present that the effective length B_L must be added. The total length L_{tot} of the linear table is determined from the total stroke length G_H , the lengths of the end plates L_4 and L_5 on both sides and the carriage plate length L.	
Parameters for length calculation	$\begin{array}{cccc} G_H & mm & \\ Total stroke length & & \\ N_H & mm & \\ Effective stroke length & \\ S & mm & \\ Safety spacing, see table, page 660 & \\ L & mm & \\ Total length of carriage unit & \\ L_2 & mm & \\ Length of base plate & \\ L_4 & mm & \\ Length of end plate & \\ L_5 & mm & \\ Length of end plate & \\ L_{tot} & mm & \\ Total length of linear table & \\ B_B & mm & \\ Length of bellows fastener & \\ B_L & mm & \\ Effective length of bellows & \\ F_{BL} & - \\ Effective length factor according to linear table type. \\ \end{array}$	
Total stroke length G _H	The total stroke length $\rm G_{H}$ is determined from the required effective stroke length $\rm N_{H}$ and the safety spacings S, which must correspond to at least the spindle pitch P.	000
	$\mathbf{C}_{\mathbf{H}} = \mathbf{N}_{\mathbf{H}} + \mathbf{V} \cdot \mathbf{S}$	La
Maximum length of linear tables	The maximum length L_{tot} of high precision linear tables LTP and LTPG is 3500 mm. In the case of a total length $L_{tot} < 2 \cdot L + L_4 + L_5 + 30$, not all fixing holes in the support rail will be accessible, so please consult us.	

B

Total length L_{tot}

The following equations are designed for one linear table. The parameters and their position can be found in *Figure 1* and the table, page 660.

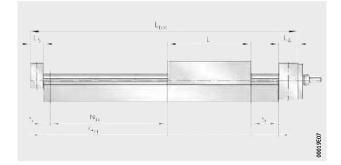
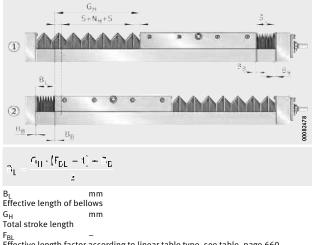


Figure 1 Length parameters for one high precision linear table Linear table LTP without bellows

Linear table LTP with bellows

Length parameters

$L_{\rm tot}=G_{\rm H}+L+L_{\rm A}+L_{\rm S}$	
$L_{tot} = \widehat{a}_H \cdot F_{aL} + L + L_g + L_s + B_H$	


Designation	Spindle pitch P mm	L	L ₄ mm	L ₅ mm	S mm	F _{BL}	B _B mm
	5				5		
LTP15-185	10				10		
LTPG15-185	20	185	35	25	20	1,35	28
	50				50		
	5				5		
LTP15-275	10	0.75	35	25	10	1,35	20
LTPG15-275	20	275			20		
	50				50		
	5				5		
LTP25-325 LTPG25-325	10	225	25	20	10	1 27	20
	20	325	35	30	20	1,27	20
	40				40		

Effective length of bellows

The effective length of bellows is the length occupied by the bellows in the fully compressed state. Calculation is based on the total stroke length G_H , *Figure 2*, equation and table, page 660.

Carriage unit against the right end stop
 Carriage unit against the left end stop

Figure 2 Effective length calculation

 F_{BL} — Effective length factor according to linear table type, see table, page 660 B_B mm Length of bellows fastener.

Calculation of hole pattern of base plates

Parameters for hole pattern calculation Base plates are supplied as standard with a symmetrical hole pattern. If a symmetrical hole pattern is present: $a_R = a_L$. In the following calculation, the values must not be less than the value $a_{R \min}$ ($a_{L \min}$).

 a_R, a_L mm Left and right spacing between the end of the base plate and the nearest hole centre point, *Figure 3* and *Figure 4*, page 663 $a_R \min = a_{L \min} = 20$ mm

j_{L8} mm Hole spacing, see dimension table

L mm Total length of carriage plate

mm L₂

Total length of base plate

- L₄, L₅ Lengths of bearings mm
- mm
- L_{tot} Total length of linear table mm

J_{B8} mm Hole spacing of inner row of holes

J_{B9} mm Hole spacing of outer row of holes.

The number of hole pitches n is the whole number equivalent to:

$$n = \frac{L_2 - 2 \cdot a_{Rrith}}{L_N}$$

The spacing a_L between the end of the base plate and the nearest hole centre point is calculated as follows:

$$|a_{k_{1}}a_{1}| = 0.5 \cdot (L_{2} - n \cdot |_{L_{2}})$$

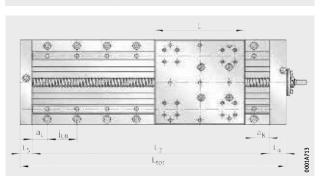
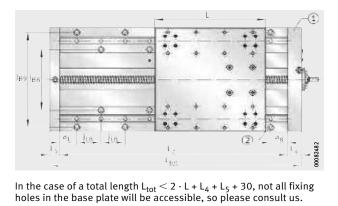



Figure 3 Spacings a_R and a_L on the base plate

In the case of double rows of fixing holes, the first fixing hole is always in the outer row on the locating bearing side, *Figure 4*.

The total mass of a linear table is calculated from the mass of the table without a carriage unit and the carriage unit.

① Locating bearing side (2) First hole in outer rows

Figure 4 Spacings a_R and a_L on the base plate in double rows of fixing holes

Mass calculation

Values for mass calculation, D aluminium design

Mass	
Carriage unit ¹⁾	Table without carriage unit
m _{LAW}	m _{BOL}
≈kg	≈kg
3,5	$(L_{tot} - 60) \cdot 0,0181 + 2,6$
6,4	(L _{tot} – 60) · 0,025 8 + 3,6
12,3	(L _{tot} - 65) · 0,043 3 + 6,2
	Carriage unit ¹⁾ m _{LAW} ≈kg 3,5 6,4

Values for mass calculation, cast iron design

Designation	Mass					
	Carriage unit ¹⁾	Table without carriage unit				
	m _{LAW}	m _{BOL}				
	≈kg	≈kg				
LTPG15-185	6,4	(L _{tot} − 60) · 0,041 9 + 5,5				
LTPG15-275	13,8	$(L_{tot} - 60) \cdot 0,0528 + 8,1$				
LTPG25-325	26,5	(L _{tot} − 65) · 0,084 4 + 13,9				

1) Including single or preloaded double nut.

 $m_{tot} = m_{LAW} + m_{BO}$

Lubrication The information on the lubrication of LTP and LTPG substantially matches the information on the lubrication of LTE, see page 579. The only differences are in the relubrication quantities and relubrication points.

Relubrication Relubrication should be carried out wherever possible with several partial quantities at various times instead of the complete quantity at the time of the relubrication interval. Relubrication quantities, see table.

Relubrication quantity per lubrication nipple

Series		init, carriag drive and		Ball screw drive			
	d ₀	Ρ		Locating bearing	Non-locating bearing		
	mm	mm	\approx g				
LTP15-185	20	5	2,6	Lubricated	Lubricated		
and LTPG15-185		10	3,1	for life ¹⁾	for life ¹⁾		
		20	5				
		50	10,6				
LTP15-275	20	5	2,6				
and LTPG15-275		10	3,1				
211 019 27 9		20	5				
		50	10,6				
LTP25-325	32	5	5,4				
		10	7,1				
		20	10,8				
		40	13,5				
LTPG25-325	32	5	9,4				
		10	11,1				
		20	14,8				
		40	17,5				

1) If relubrication is required due to the application, please consult us.

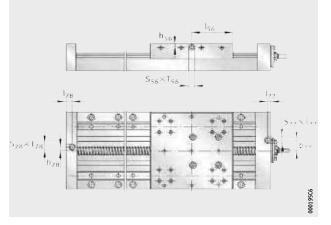
Relubrication points Relubrication can be carried out via a funnel type lubrication nipple in accordance with DIN 3405-A M8×1 on the side of the carriage unit, *Figure 5*. The thread of the lubrication nipple hole can also be used for connection to a central lubrication system. The carriage and the spindle nuts are supplied centrally with grease via this one

LTP LTPG

 Relubrication point for locating bearing

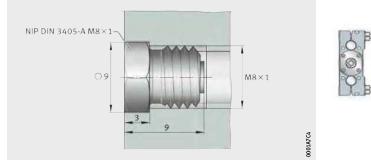
 Relubrication point for non-locating bearing
 Relubrication point for carriage unit

Figure 5 Lubrication points on linear table


Schaeffler Technologies

664 | AL 1

Position of relubrication points


Desig-	Mour	Mounting dimensions										
nation	Carriage unit			Locating bearing			Non-locating bearing					
			Ø				Ø				Ø	
	h ₅₆	l ₅₆	$S_{56}^{1)}$	$T_{56}^{1)}$	b ₇₇	l ₇₇	S ₇₇ ¹⁾	$T_{77}^{1)}$	b ₇₈	l ₇₈	S ₇₈ ¹⁾	$T_{78}^{1)}$
	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
LTP15-185	11	74,5			26				10	14		
LTP15-275	9,5	135	15	5	20	6,5	15	3,5	-	14	15	3,5
LTP25-325	10	150			26,5					17		

1) Countersink for lubrication nipple.

Figure 6 Lubrication points **Lubrication nipples**

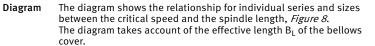
High precision linear tables are lubricated via funnel type lubrication nipples NIP according to DIN 3405, *Figure 7*.

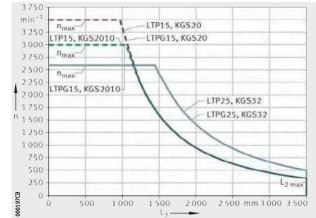
NIP DIN 3405-A M8imes1

Figure 7 Funnel type lubrication nipple

Maximum permissible spindle speed

Screw drives must not be allowed to run in the critical speed range. The critical speed is essentially dependent on the following factors:


- spindle length
- spindle diameter
- spindle bearing arrangement
- mounting method.


The carriage unit velocity v is determined from the spindle speed n and the spindle pitch P. The limit values for velocities must be observed, see page 559.

For calculation of the carriage unit velocity, the following applies:

$$r = \frac{n}{n^2}$$
v m/s
Carriage unit velocity
n min⁻¹
Spindle speed
P mm
Spindle pitch.

Ρ

LTPG25 $\rm n_{max}$ for pitch 5 mm

LTP15

LTPG15

LTP25

- n = spindle speed $L_{tot} = support shaft length$
- Figure 8 Maximum permissible spindle speed without spindle supports

Kinematic operating limits

Maximum velocities are determined as a function of the critical spindle speed, see table. The limiting speed of the bearings can also restrict the spindle speed and thus the velocity.

Kinematic operating limits

Series and size	Spindle		Spindle nut design				Maximum accel-	Maximum velocity	Maximum spindle
	d ₀	Р			eration a	v	speed n		
	mm	mm			m/s ²	m/s	min ⁻¹		
LTP15-185	20	5	F	FM	20	0,29	3 500 ¹⁾		
LTPG15-185		10	F	FM		0,5	3 000		
LTP15-275		20	F	-		1,16	3 500 ¹⁾		
LTPG15-275		50	F	-		2,9	3 500 ¹⁾		
LTP25-325	32	5	F	FM	20	0,215	2 600 ¹⁾		
LTPG25-325		10	F	FM		0,43	2 6001)		
		20	F	FM		0,86	2 600 ¹⁾		
		40	F	-		1,73	2 600 ¹⁾		

1) Restricted by the limiting speed of the bearing with grease lubrication.

Mounting requirements

The information on the influences of the adjacent construction of LTP matches the information on the influences of the adjacent construction of LTE, see page 585. The information on the mounting position and mounting arrangement of LTP matches the information on the mounting position and mounting arrangement of LTE, see page 586. The only information covered here is that which is additional to or different from the information given previously.

Location If the geometrical characteristics of high precision linear tables LTP and LTPG are to be fully utilised, mounting on completely flat supporting surfaces with low roughness values is necessary. Linear tables LTP and LTPG are located on the adjacent construction via the base plate by means of conventional screws. The components to be moved are also located on the carriage unit by means of conventional screws.

For location of the linear tables, all the fixing holes should be used. If the total length is small, not all the fixing holes in the base plate may be accessible. In such cases, please consult the Schaeffler

Figure 9 Location may be accessible. In such cases, please consult the Schaeffler engineering service.

of the high precision linear table

Accuracy Length tolerances

Length tolerances of high precision linear tables LTP and LTPG, Figure 10 and table.

Total length L _{tot} of linear tables LTP and LTPG	Tolerance
mm	mm
$L_{tot} \leq 3500$	-1

Pitch accuracy of spindle

Tolerances

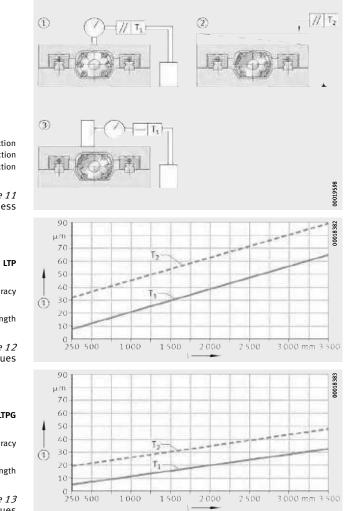
High precision linear tables with ball screw drive are available with a single flanged nut with clearance, see table, page 669. Where higher accuracy requirements are present, preloaded (clearancefree) double nuts are possible for many pitch values, see table, page 669.

In the case of high precision linear tables, the nut unit (double nut) can only be preloaded clearance-free if the spindle pitch P is less than the nominal diameter d_0 of the spindle.

Series and	Spindle	e		Spindle nut			
size	$\emptyset d_0$	Р	Pitch accuracy	Single or double nut	Suffix	Axial clearance	
			Р			max.	
	mm	mm	μm each 300 mm			mm	
LTP15-185		5		Single	F	0,05	
LTPG15-185		5		Double	FM	Preloaded	
		10		Single	F	0,05	
		10		Double	FM	Preloaded	
		20		Single	F	0,05	
	20	50					
LTP15-275	20	5		Single	F	0,05	
LTPG15-275		5		Double	FM	Preloaded	
		10		Single	F	0,05	
		10	50	Double	FM	Preloaded	
		20		Single	F	0,05	
		50					
LTP25-325		5		Single	F	0,05	
LTPG25-325		,		Double	FM	Preloaded	
		10		Single	F	0,05	
	32	10		Double	FM	Preloaded	
		20]	Single	F	0,05	
				Double	FM	Preloaded	
		40	1	Single	F	0,05	

Ball screw drive

Parallelism values


The parallelism values T_1 and T_2 are based on an ideally flat locating surface. Geometrical deviations of the locating surface are not taken into consideration.

The values in the diagrams are standard accuracies, *Figure 12* and *Figure 13*, page 670.

During measurement of the values, the following conditions apply:
 T₁ and T₂ measured with a clamped base plate, where all fixing holes must be used

parallelism in a longitudinal direction measured at the centre of the carriage unit.

1 Parallelism in longitudinal direction (2) Parallelism in transverse direction (3) Straightness in longitudinal direction

Figure 11 Parallelism and straightness

① Accuracy

l = length

Figure 12 Accuracy values

LTPG

Accuracy

l = length

Figure 13 Accuracy values

Ordering example, ordering designation

Available designs

Available designs of high precision linear tables LTP and LTPG, see table.

Design	Linear table with linear recirculating ball bearing a guideway assemblies and ball screw		
Size	Size code		
Carriage plate length	Length	L	mm
Drive type with	Ball screw drive	•	
Spindle dimensions	Ball screw diameter	d ₀	mm
	Spindle pitch	Р	mm
Nut design	Single nut	F	
	Double nut	FM	
Cover optional	Without bellows	0	
	With bellows	1	
Lengths	Total length	L _{tot}	mm
	Total stroke length	G_H	mm

• Standard scope of delivery.

■ Design not available.

Design	ation and	suffixes									
LTP an	d LTPG										
15				15				25			
185				275				325			
•				•	•				•		
20				20	20			32	32		
05	10	20	50	05	10	20	50	05	10	20	4
F	F	F	F	F	F	F	F	F	F	F	F
FM	FM			FM	FM			FM	FM	FM	
0		•		0	0			0			
1				1				1			
to bo c	alculated f	rom total s	troke leng	th, see pag	a 660						-

to be calculated from effective stroke length, see page 660

Schaeffler Technologies

AL 1 | 673

precision linear table with ball screw drive	High precision linear table with linear recirculating ball bearing and guideway assemblies and	
	ball screw drive (aluminium design)	LTP
	Size code	25
	Carriage plate length L	325
	Ball screw drive, d ₀ = 32 mm, pitch P = 10 mm	3210
	Nut (preloaded, double nut)	FM
	Bellows (with = 1, without = 0)	1
	Total length L _{tot}	918 mm
	Total stroke length G _H	400 mm

Ordering designation LTP25-325-3210-FM-1/918-400, Figure 14

Figure 14 Ordering designation

High

High precision	linear table
with ball	screw drive

High precision linear table with linear recirculating ball bearing and guideway assemblies and	
ball screw drive (cast iron design)	LTPG
Size code	25
Carriage plate length L	325
Ball screw drive, $d_0 = 32 \text{ mm}$, pitch P = 10 mm	3210
Nut (preloaded, double nut)	FM
Bellows (with $= 1$, without $= 0$)	1
Total length L _{tot}	918 mm
Total stroke length G _H	400 mm

Ordering designation

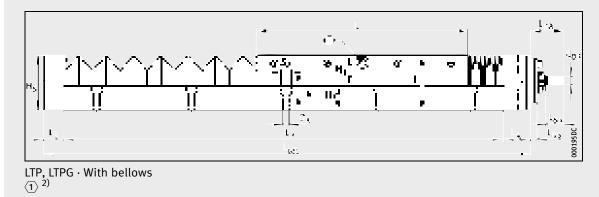

LTPG25-325-3210-FM-1/918-400, Figure 15

Figure 15 Ordering designation

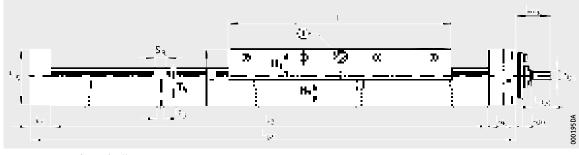
Linear recirculating ball bearing and guideway assemblies with ball screw drive Aluminium design (LTP) Cast iron design (LTPG)

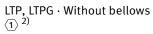
LTP, LTPG

Designation	Dimensions			Mounting dimensions							
Aluminium	Cast iron	B ₄ H L			b ₈₂	b ₈₇	$arnothing d_{85}$	$arnothing d_{86}$	$G_{87} imes t_{87}$	h ₈₂	h ₈₅
						±0,2	h6	-0,01	M imes depth		
LTP15-185	LTPG15-185	185	75	185	-	80	11	60	M6×15	-	40
LTP15-275	LTPG15-275	275	15	275	65					31	40
LTP25-325	LTPG25-325	325	100	325	75	96	19	75	M8×20	31	52

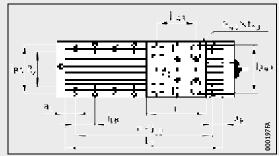

Calculation of length $L_{\mbox{tot}}$, see page 659.

Calculation of effective length ${\rm B}_{\rm L}$ of bellows, see page 661.

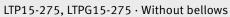

¹⁾ Location of high precision linear tables: High precision linear tables are supplied as standard with a symmetrical hole pattern. With a symmetrical hole pattern, $a_L = a_R$. Calculation of the hole pattern, see page 662.

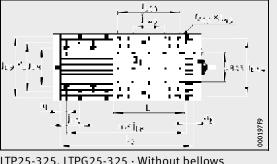

²⁾ (1) Lubrication nipples, see page 665.

Dimension table (continued) · Dimensions in mm											
Designation		Fixing screws									
Aluminium	Cast iron	Table base plate		Carriage unit							
		D ₈	S ₈	T ₈	G ₄₃	t ₄₃					
LTP15-185	LTPG15-185	9	15	11	9×M8	16					
LTP15-275	LTPG15-275	2	15	11	$16 \times M8$						
LTP25-325	LTPG25-325	11	18	13,5	25×M8	16					

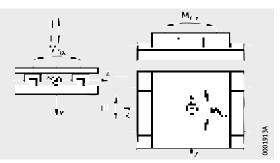


676 | **AL 1**



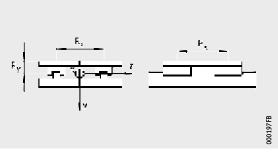

h ₈₇ ±0,2	H ₁	H ₂	H ₄ , H ₅	j _{B8}	j _{B9}	j _{B43}	j _{B44}	j _{L8} 1)	j _{L43}	j _{l44}	L ₄	L ₅	L ₈₅	L ₈₆	L ₈₈	Rz
33	40,5	34	74,5	160	-	164	-	60	120	-	35	25	23	8	42	116
	40,5	54	74,5	160	250	140	252		70	210						206
44	55,5	44	99,5	185	298	140	280	60	140	280	35	30	40	9	65	240

LTP15-185, LTPG15-185 · Without bellows



LTP25-325, LTPG25-325 · Without bellows

Linear recirculating ball bearing and guideway assemblies with ball screw drive Performance data


Load directions

Performance data													
Designation	Carriage guidance system												
	Carriages								Permissible static moment ratings ¹⁾				
		Load direction I Compressive load		Load di Tensile	rection II load	Load direction III Lateral load					Spac betw carri		
			dyn. stat. C C ₀		stat. dyn. C ₀ C		stat. C ₀	M _{0x per} M _{0y per} M				Ry	R _z
		N	N	N	N	N	N	Nm	Nm	Nm	mm	mm	mm
LTP(G)15-185	4×KWE15-H	17 150	36 800	17 150	36 800	17 150	36 800	1 830	1 480	1 480	118	34,5	116
LTP(G)15-275	4×KWE15-H	17 150	36 800	17 150	36 800	17 150	36 800	3 400	3 000	3 000	198	34,5	206
LTP25-325	4×KWE25−H	47 200	83 600	47 200	83 600	47 200	83 600	16 600	8 800	8 800	220	48	240
LTPG25-325	4×KWSE25-H	73 900	268 000	60 400	172 000	56 200	184 000	18 000	10 400	10 400	220	45,3	240

 The values are single loads and apply when the underside of the table is fully supported. These must be reduced for combined loads. For design criteria of the linear guidance system,

see Catalogue PF1, Monorail Guidance Systems.

²⁾ Basic load ratings in accordance with DIN 69051. Due to the modified calculation algorithms in DIN 69051, the basic load ratings C_a and C_0 may differ in comparison with older data.

Mounting geometry of carriages

Drive										
Spindle			Spindle nut		Spindle bearing arrangement (locating bearing)					
Diameter d ₀	Pitch P	Mass moment of inertia	Design	Basic dynamic load rating $C_a^{(2)}$	Basic static load rating $C_0^{(2)}$	Bearing		Drive torque on drive stud max.		
mm	mm	kg∙cm ²		N	N		dyn. C _a N	stat. C _{0a} N	Nm	
	5		Single nut,	10 500	16600					
20	10	0,85	double nut	12700	22100	ZKLF1560.2RS	17 900	28 000	15	
	20		Circula mut	11 600	18400					
	50		Single nut	13 000	24 600					
	5	0,85	Single nut, double nut	10 500	16600	ZKLF1560.2RS	17 900	28 000	15	
20	10		uouble nul	12700	22100					
	20		Single nut	11 600	18400					
	50		Single nut	13 000	24600					
	5		C ¹	21 500	49 300					
32	10	6,43	Single nut, double nut	33 400	54 500	ZKLF2575.2RS	27 500	55 000	50	
52	20	0,49		29700	59800	21(2)7 5.2(3				
	40		Single nut	14900	32 400					
	5		Single put	21 500	49 300		27 500	55 000		
32	10	6,43	Single nut, double nut	33 400	54 500	ZKLF2575.2RS			50	
52	20	0,15		29700	59800					
	40		Single nut	14 900	32 400					

Multi-axis Positioning Systems

From standard linear systems to individual complete solutions

Systems Expertise

From standard to individual: New Schaeffler portfolio for positioning systems

Example of a positioning system according to customer requirements

The designers of handling systems place a high value on individual complete solutions, since these can save them a great deal of valuable time.

We have therefore developed a completely new concept for positioning systems: proven INA linear systems + smart ideas from our experienced machine system developers + flexible production capacities for short delivery times.

Schaeffler is thus in a position to offer you an economical, allround service package – from the planning phase, through design and layout, to assembly and initial operation at your company. The product spectrum extends from ready-to-fit, single-axis units through to completely integrated multi-axis positioning systems. All matched to customer requirements.

The advantages for you at a glance:

- · Components perfectly matched to each other
- Assembly and initial operation service
- Worldwide service network
- Time savings in planning, design and purchasing.

An economical solution: Driven linear units constructed from standard components

Through the combination of perfectly matched driven linear units with appropriate accessories and drive and control elements, we can tailor the multi-axis positioning systems exactly to customer requirements.

The product portfolio of INA Linear Technology Division is one of the most comprehensive in the world. This means we can serve the widest variety of market sectors: assembly and handling, automation equipment, packaging machinery, electronic component manufacture and many others. The spectrum extends from miniature guidance systems for clean room applications to heavy duty actuators for extreme loads, such as in steel plants and rolling mills. As a systems supplier, we offer ready-to-fit complete solutions.

Each series has its particular advantages. Selection of the "right" linear system is guided by your requirements for

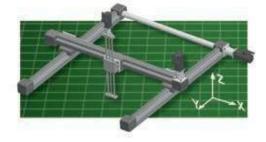
- dynamic characteristics
- load
- moving masses
- positioning and repeat accuracy
- environmental influences.

In the appropriate size for your application, you can choose between ...

- guidance systems (track roller and shaft guidance systems, linear recirculating ball bearing and guideway assemblies)
- **types of drive** (toothed belt and ball screw or trapezoidal lead screw drives, linear motor drives)
- linear actuators with special functions (telescopic actuators, quill type actuators, actuators with opposing carriages)
- a wide **range of accessories** (fasteners and connectors, couplings, coupling housings, ...)
- drive and control elements (motors, gearboxes, sensors, controllers, ...)

For applications with small to moderate stroke lengths and speeds where increased accuracy is required, **INA linear tables** of various designs are available.

How to save on design work: Standard multi-axis positioning systems


With the proven standard multi-axis positioning systems, many applications can be realised without additional design work. This allows you to complete projects rapidly using components that are already matched to each other. You have considerably less design and planning work and within a very short time you receive a proposal from us for a positioning system with your required axis travel distances.

The standard 3 axis positioning systems are available in two classes: up to 5 kg and up to 15 kg moving mass.

- Arrangement: Gantry portal for freely selectable, three-dimensional movements
- Function: Parts handling, assembly, etc.
- Build status: Preconfigured ready for operation, including drive and connection equipment such as AC servomotors, controllers, cables, flexible cable carriers, etc.

MPS301/5 (up to 5 kg moving mass)

Axis	Series	Stroke h _{max.} [mm]	Acceler- ation a [m/s²]	Speed v [m/s]	Repeat accuracy [mm]
Х	MLF52-130 ZR	7500	4	1	± 0,1
Y	MLF52-145 ZR	1000	4	1	± 0,1
Z	LTE20-B-KGT	200	1,2	0,3	± 0,05

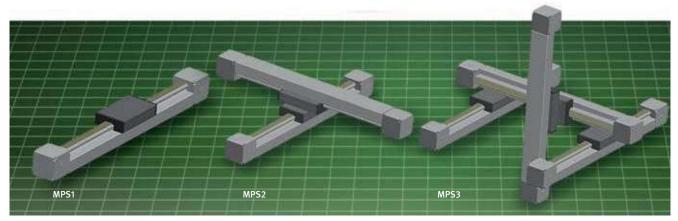
The axes of the multi-axis positioning system comprise:

X and Y axis: Actuator with track roller guidance system and toothed belt drive of series MLF52-ZR

Z axis: Linear table with linear ball bearing guidance system and ball screw drive of series LTE20-B-KGT

MPS301/15 (up to 15 kg moving mass)

Axis	Series	Stroke h _{max.} [mm]	Acceler- ation a [m/s ²]	Speed v [m/s]	Repeat accuracy [mm]
х	MKUVE20-B-ZR	7500	4	1	± 0,1
Y	MKUVE20-B-ZR	1000	4	1	± 0,1
Z	MKUVE15-KGT	200	1,2	0,3	± 0,05



The axes of the multi-axis positioning system comprise:

X and Y axis: Actuator with linear recirculating ball bearing and guideway assembly and toothed belt drive of series MKUVE20-B-ZR

Z axis: Actuator with linear recirculating ball bearing and guideway assembly and toothed belt drive of series MKUVE15-KGT

Tailor-made for you: Individual multi-axis systems of versatile design

Examples of possible axis configuration

You have a brief to fulfil, in which you are not making progress with a standard linear system or a standard multi-axis positioning system? Then just ask us! As a systems supplier, we can realise the requirements completely to the wishes and requirements of our customers.

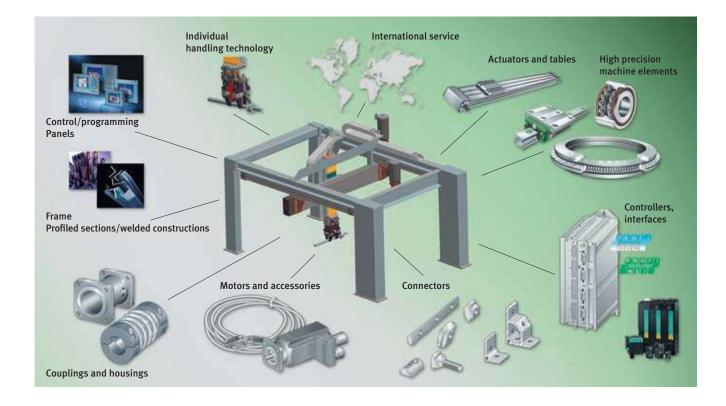
An extensive modular concept of fasteners and connectors allows a large number of assembly configurations with driven linear units. You can use this to fulfil practically any requirement – for example:

- number of axes from 1 to ...
- position and positioning of linear units (assembly arrangement)
- location method
- function.

The following performance data are achievable:

- travel distance (stroke) up to 30 m
- travel speed up to 10 m/s
- moving mass up to 500 kg

Application example: Sorting station


Performance data for customer application "Defined-position sorting of workpieces" Workpiece mass: 20 kg

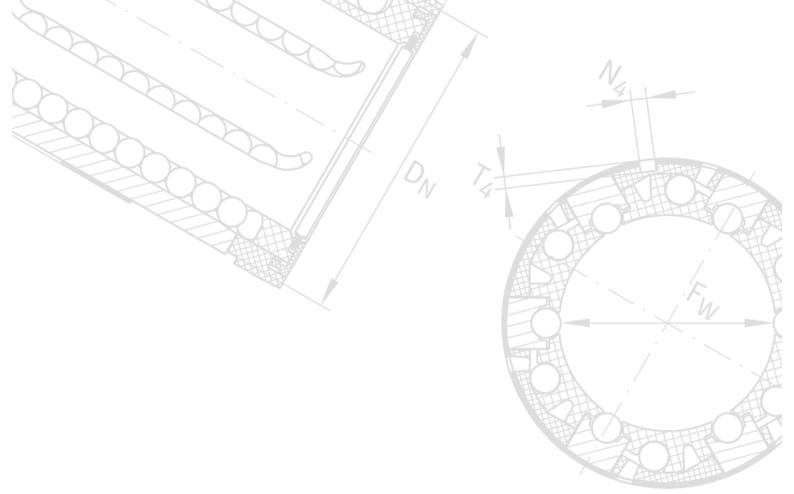
	х	Y	Z
Total stroke [mm]	1000	1400	400
Speed [m/s]	4,3	2,7	1,25
Acceleration [m/s ²]	19	11,5	20

Sorting station (customer application)

Supplied to you "turnkey ready": Ready-to-fit complete solutions

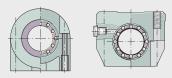
Upon request, you will receive your individual positioning system supplied by us, completely assembled and ready for operation. Our portfolio of services includes all necessary operations and preparations such as:

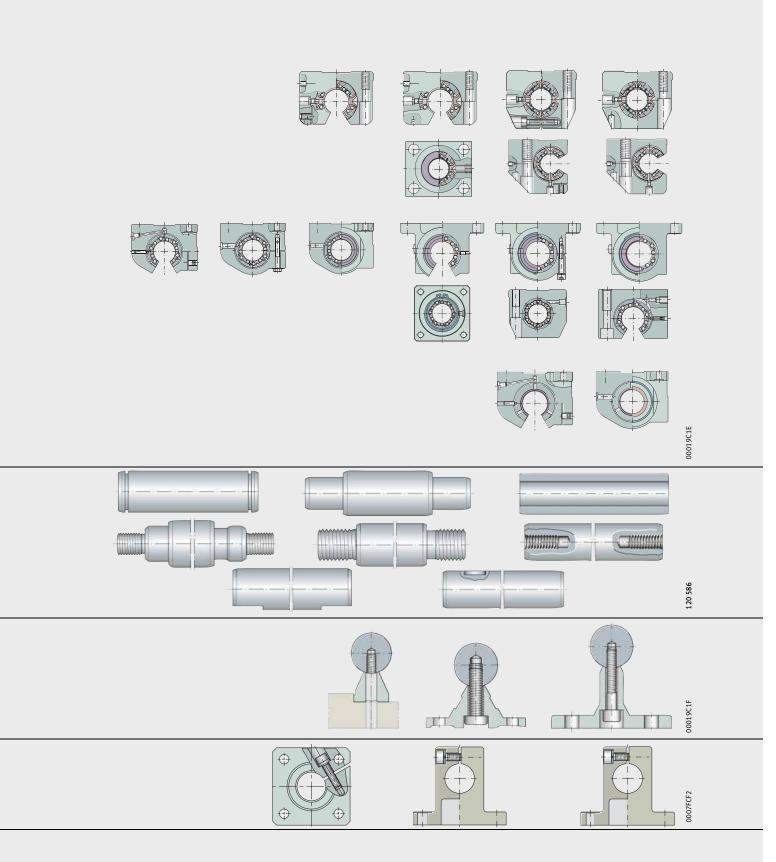
- project management and layout
- overall and detailed design
- preliminary and final assembly of components
- safety and control devices

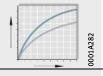

All the services listed above are of course offered worldwide.

- control and programming
- transport and final assembly of the positioning system
- initial operation and service
- maintenance (including remote maintenance)

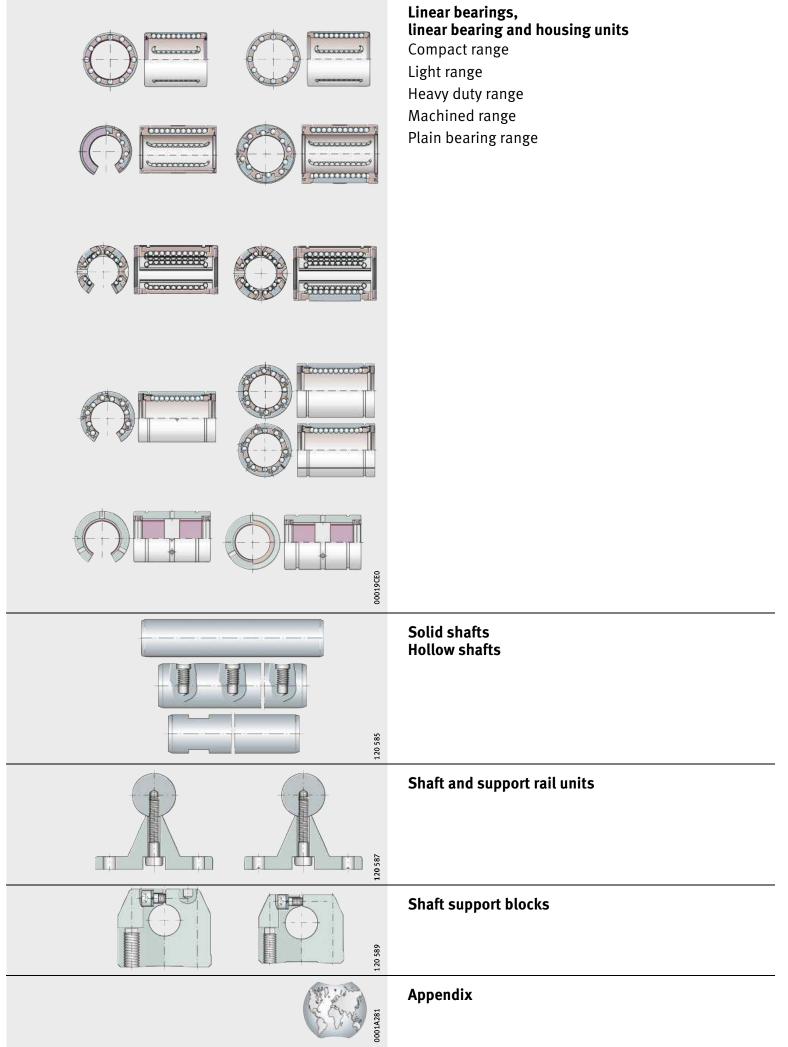
Examples of automation equipment: Triple axis positioning system

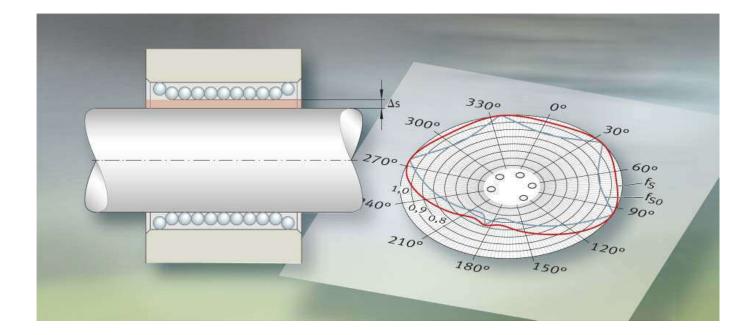





Shaft Guidance Systems

Linear bearings, linear bearing and housing units Solid shafts, hollow shafts Shaft and support rail units Shaft support blocks


वे



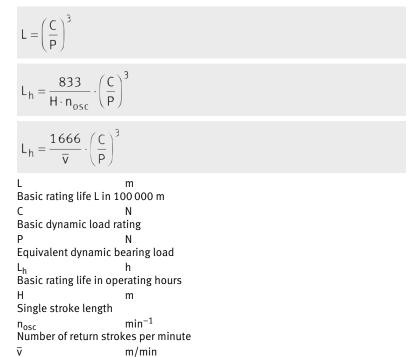
Technical principles

Technical principles

Load carrying capacity and life Friction Lubrication Design of bearing arrangements Operating clearance Fitting

The size of a linear ball bearing is determined by the demands made in terms of load carrying capacity, rating life and operational security.

The load carrying capacity is described in terms of:


- the basic dynamic load rating C
- the basic static load rating C_0 .

Mean travel velocity.

The calculation of the basic dynamic and static load ratings given in the dimension tables is based on DIN 636-1.

Basic rating life

The basic rating life L is reached or exceeded by 90 % of a sufficiently large group of apparently identical bearings before the first evidence of material fatigue occurs.

Operating life The operating life is defined as the life actually achieved by a shaft guidance system. It may differ significantly from the calculated life. The following influences can lead to premature failure through wear or fatigue:

- misalignment between the guideways and guidance elements
- contamination
- inadequate lubrication
- reciprocating motion with very small stroke length (false brinelling)
- vibration during stoppage (false brinelling).

Due to the wide variety of mounting and operating conditions, it is not possible to precisely predetermine the operating life of a shaft guidance system. The safest way to arrive at an appropriate estimate of the operating life is comparison with similar applications.

Static load safety factor

The static load safety factor S_0 indicates the security against impermissible permanent deformations in the bearing and is determined by means of the following equation.

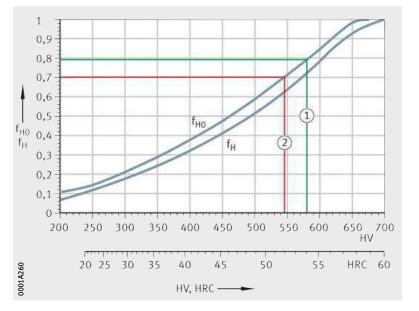
$$S_0 = \frac{C_0}{P_0}$$

 $\begin{array}{ccc} S_0 & -\\ Static load safety factor\\ C_0 & N\\ Basic static load rating\\ P_0 & N\\ Equivalent static load. \end{array}$

For linear ball bearings KH and KN..-B, the value must be $S_0 \ge 4$. In relation to guidance accuracy and smooth running, a value of $S_0 \ge 2$ is regarded as permissible. If $S_0 < 2$, please contact us.

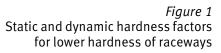
16 | WF 1

Influence of the shaft raceway on the basic load ratings


Differences in raceway hardness

The basic load ratings in the dimension tables are only valid if a ground (Ra 0,3) and hardened shaft (at least 670 HV) is provided as a raceway.

If shafts with a surface hardness lower than 670 HV are used (for example, shafts made from X46 or X90), a hardness factor must be applied, see equations and *Figure 1*.


$$C_{H} = f_{H} \cdot C$$

 $C_{OH} = f_{HO} \cdot C_{O}$
 C_{H} N

 $\begin{array}{ccc} Effective dynamic load rating \\ f_{H} & - \\ Dynamic hardness factor, Figure 1 \\ C & N \\ Basic dynamic load rating \\ C_{0H} & N \\ Effective static load rating \\ f_{H0} & - \\ Static hardness factor, Figure 1 \\ C_{0} & N \\ Basic static load rating. \\ \end{array}$

f_{H0} = static hardness factor f_H = dynamic hardness factor HV, HRC = surface hardness

① X90 ② X46

Load direction and orientation of the ball rows

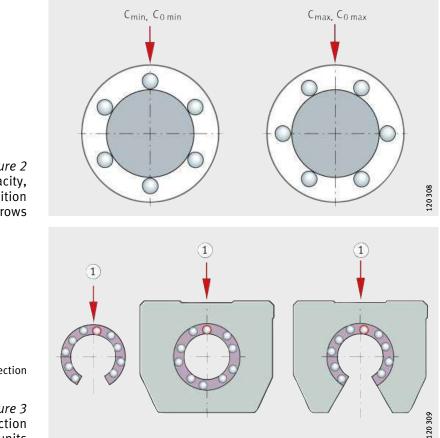
The effective load rating of a linear ball bearing is dependent on the position of the load direction in relation to the position of the ball rows:

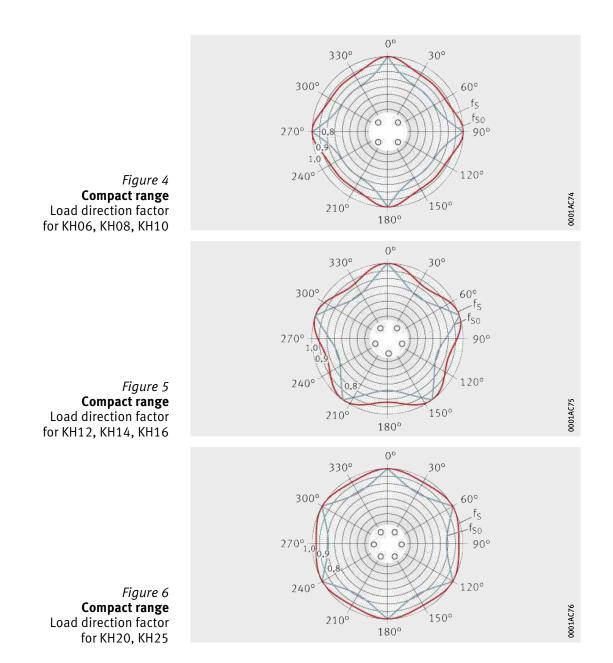
- The lowest load rating C_{min} and C_{0 min} occurs at the zenith position, *Figure 2*.
- The highest load rating C_{max} and C_{0 max} occurs at the symmetrical position, *Figure 2*.

If the bearings are mounted in correct alignment, the maximum load rating can be used. If aligned mounting is not possible or the direction of loading is not defined, the minimum load ratings must be assumed.

Main load direction For linear ball bearings and linear ball bearing and housing units where the mounting position of the ball rows is defined, the basic load ratings C and C_0 in the main load direction are given, *Figure 3*. For other load directions, the effective load ratings can be determined using the load direction factors in *Figure 4*, page 20, to *Figure 21*, page 24.

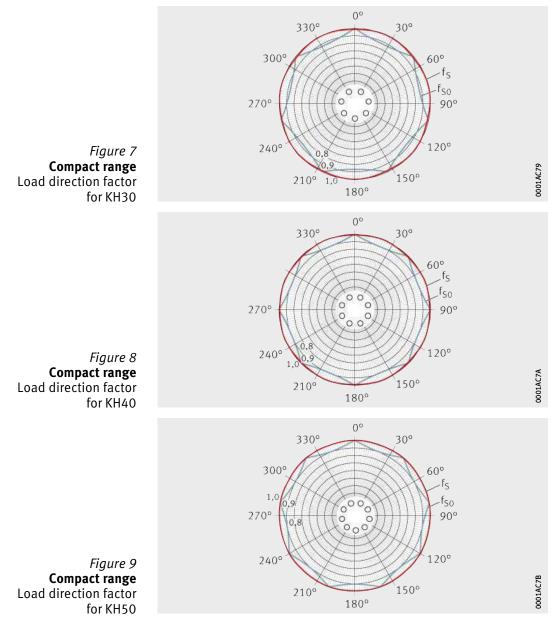
If the mounting position of the ball rows is not defined, the minimum basic load ratings are stated.

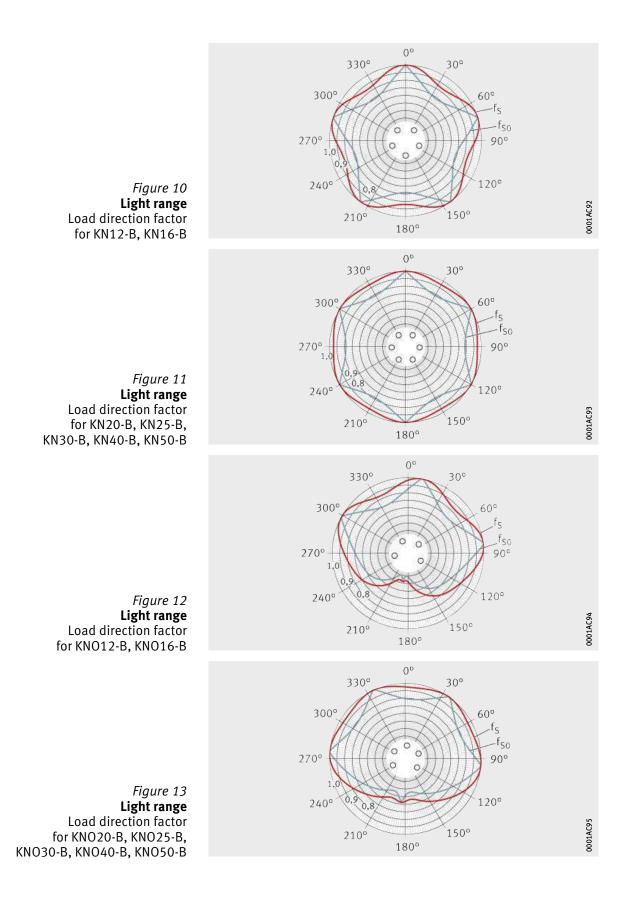


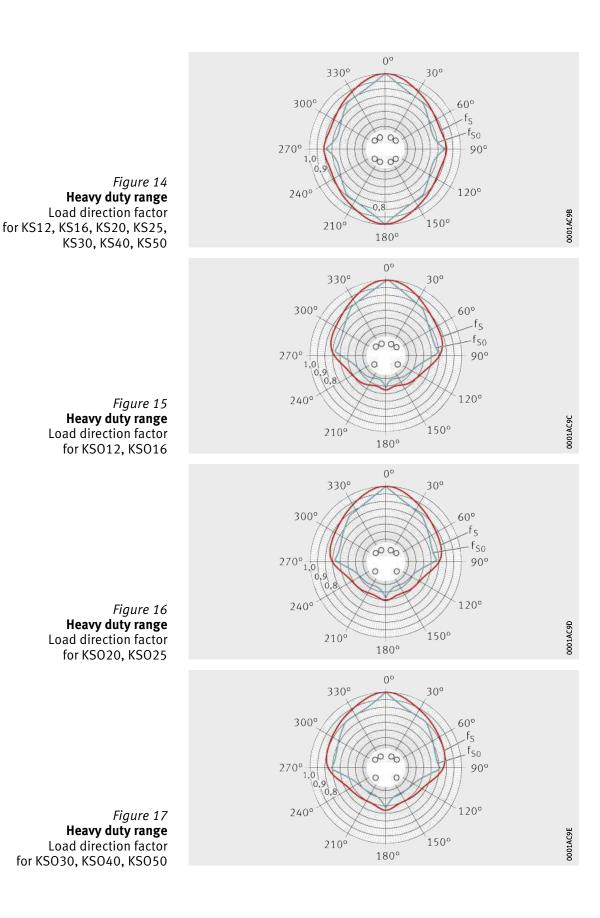

Figure 2 Load carrying capacity, dependent on the position of the ball rows

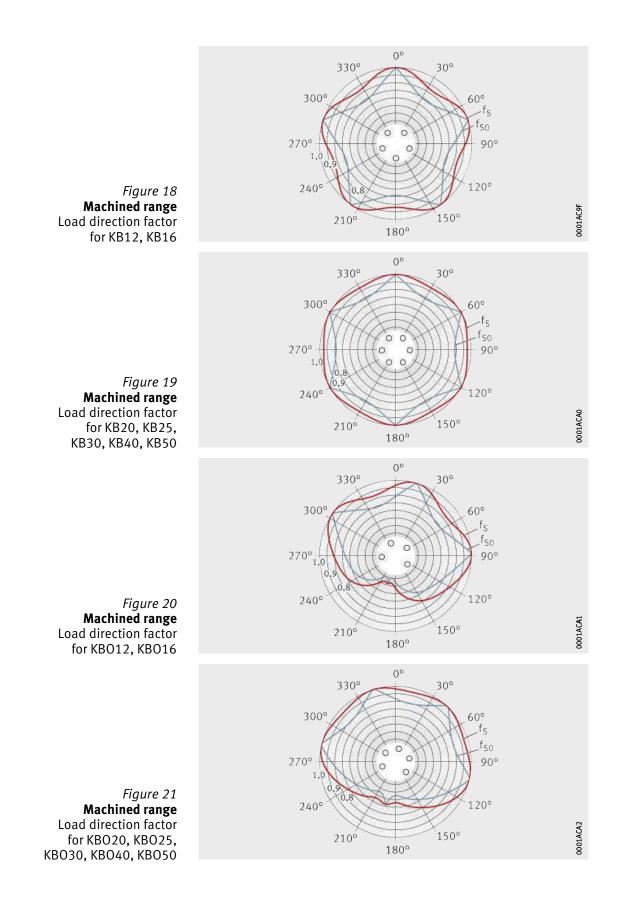
1 Main load direction

Figure 3 Main load direction for bearings and housing units




Linear ball bearings	 The basic load ratings given in the dimension tables are defined as follows: For KH, KNB, KS, KB and KBS, the minimum and maximum load ratings apply, <i>Figure 2</i>, page 18. For KNOB, KSO and KBO, the basic load ratings apply in the main load direction. In the case of other load directions, see <i>Figure 4</i>, page 20, to <i>Figure 13</i>, page 22. 			
Linear ball bearing and housing units	The basic load ratings given in the dimension tables are defined as follows:			
Compact range	For the units KGHK, KTHK, the minimum load rating applies.			
Heavy duty range	For the heavy duty range, the basic load rating applies in the main load direction. In the case of other load directions, see <i>Figure 14</i> to <i>Figure 17</i> , page 23.			
Machined range	For the units KGB, KGBA, KTB, KGBS, KGBAS, the minimum load rating applies. For the open units KGBO, KGBAO, the basic load rating applies in the main load direction. In the case of other load directions, see <i>Figure 20</i> to <i>Figure 21</i> , page 24.			
Load direction factors	The factors in <i>Figure 4</i> , page 20, to <i>Figure 13</i> , page 22, are applied as follows: $C_{w} = f_{S} \cdot C$ $C_{w} \qquad N$ Effective dynamic load carrying capacity $f_{S} \qquad -$ Dynamic load factor for load direction $C \qquad N$ Basic dynamic load rating. $C_{0w} = f_{S0} \cdot C_{0}$ $C_{0w} \qquad N$ Effective static load carrying capacity $f_{S0} \qquad -$ Static load factor for load direction $C_{0} \qquad N$ Basic static load factor for load direction $C_{0} \qquad N$ Basic static load factor for load direction $C_{0} \qquad N$			

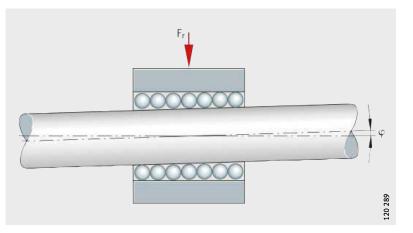

20 | WF 1



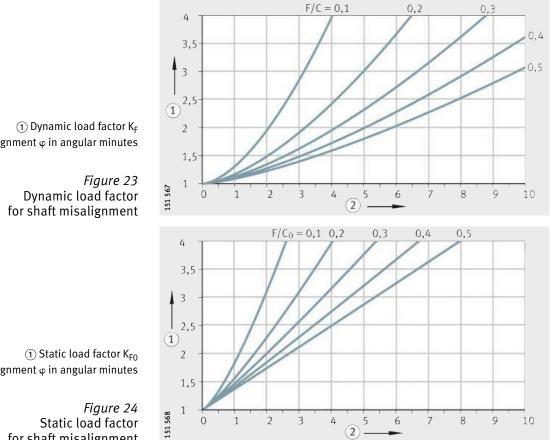
Schaeffler Technologies

Misalignment of the shaft

Misalignment of the shaft impairs the running quality and operating life of linear ball bearings. Guidance systems with one shaft should therefore have at least two bearings, while guidance systems with two shafts should have at least three bearings.


Load factors in misalignment

Due to shaft flexing, it is not always possible to avoid misalignment, *Figure 22*. If it is present, load factors for misalignment should be applied, *Figure 23* and *Figure 24*, page 26.


$$P_0 = K_{F0} \cdot F$$

P, P_0NEquivalent dynamic or static loadKF, KF0Oynamic or static load factor for misalignment,Figure 23 or Figure 24, page 26FrNMaximum radial bearing loadC, C_0NBasic radial dynamic or static load rating,Figure 23 or Figure 24, page 26.

 $F_r = radial load$ $\varphi = misalignment$

Figure 22 Misalignment ϕ of the shaft

(2) Misalignment φ in angular minutes

(2) Misalignment φ in angular minutes

for shaft misalignment

Compensation of misalignments in the light and heavy duty range

Linear ball bearings KN..-B, KNO..-B, KS and KSO and linear ball bearing and housing units containing these bearings are selfaligning. They can compensate misalignments of up to ± 30 angular minutes (KN..-B and KNO..-B) or ± 40 angular minutes (KS and KSO) without detrimental effect on the load carrying capacity.

26

Friction

	Linear ball bearings are frequently used where high position accuracy and high efficiency are a priority. The bearings mus fore run without stick-slip and with only low friction. The linear ball bearings KNB, KNOB, KS, KSO, KB, KBS, KE particularly low friction.			
Coefficient of friction	 The total friction consists of: rolling and sliding friction at the rolling contacts (sliding friction in linear plain bearings) friction in the return zones and recirculation guides lubricant friction seal friction. The factors on which the coefficient of friction depends may act in a reciprocal manner, may act in a single direction or may counterace each other. 			
Coefficient of friction in unsealed bearings	The coefficients of friction for unsealed linear bearings with oil lubrication are given in the table. In the case of linear plain bearings, the coefficient of friction is between 0,02 and 0,2.			
Series and coefficient of friction	Series	Coefficient of friction		
	КН	0,003 – 0,005		
	KNB, KNOB	0,001 – 0,0025		
	KS, KSO	0,001 – 0,0025		
	KB, KBS, KBO	0,001 – 0,0025		

Lubrication

	Open linear ball bearings are supplied with a wet or dry preservative and can be lubricated using either grease or oil. The oil-based preservative is compatible and miscible with lubricants with a mineral oil base, which means that it is not generally necessary to wash out the bearings before mounting. Bearings with a dry preservative must be greased or oiled immediately after they are removed from the packaging.
Grease lubrication	Grease lubrication should be used in preference to oil lubrication, since the grease adheres to the inside of the bearing and thus prevents the ingress of contamination. This sealing effect protects the rolling elements against corrosion. In addition, the design work involved in providing grease lubrication is less than that for providing oil, since design of the sealing arrangement is less demanding.
Composition of suitable greases	 The greases for linear ball bearings have the following composition: lithium or lithium complex soap base oil: mineral oil or poly-alpha-olefin (PAO) special anti-wear additives for loads C/P < 8, indicated by "P" in the DIN designation KP2K-30 consistency to NLGI grade 2 in accordance with DIN 51818.
Initial greasing and operating life	Based on experience, the operating life is achieved when bearings are operated with grease lubrication in normal environmental conditions (C/P > 10), at room temperature and at $v \leq 0,6 \cdot v_{max}$. If it is not possible to achieve these conditions, the bearings must be relubricated. Sealed linear ball bearings are already adequately greased when delivered and are therefore maintenance-free in many applications.
Initial greasing and relubrication of bearings	The initial greasing and relubrication of linear ball bearings without seals and relubrication holes must be carried out via the shaft. It must be ensured that all rolling elements come into contact with grease during recirculation. The bearing must be moved over at least twice its length during relubrication. During initial greasing, the bearing fitted on the shaft should be fed with lubricant until this begins to emerge from the bearing. In the case of the linear ball bearings KH, KNB-PP-AS, KSPP-AS and PABPP-AS, relubrication can be carried out via holes or openings in the retaining ring or outer ring.

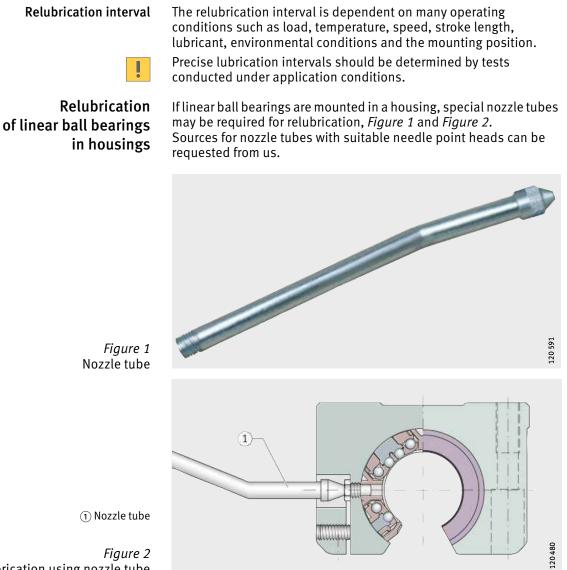
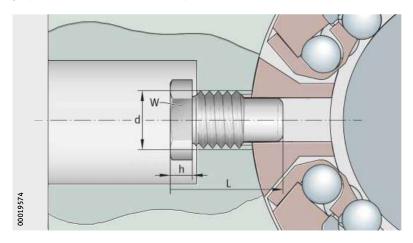
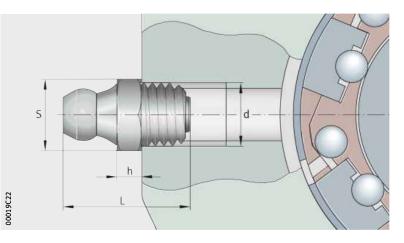



Figure 2 Relubrication using nozzle tube

Lubrication

Lubrication nipples for housings

Lubrication nipples for housings with KS are shown in *Figure 3*, suitable DIN lubrication nipples for housings with KN..-B are shown in *Figure 4* and *Figure 5*, page 31, for other housings, see *Figure 6*, page 31. The dimensions are given in the tables.



NIP...MZ

Figure 3 Lubrication nipple for heavy duty range KS

Lubrication nipples

Lubrication nipple	Width across flats	Dimensions		
	W	d mm	L mm	h mm
NIP4MZ	5	M4	7,7	1,5
NIP5MZ	6	M5	11,1	2
NIP6MZ	7	M6	14,8	2,5

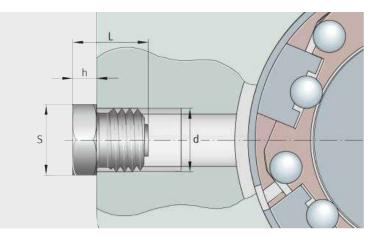
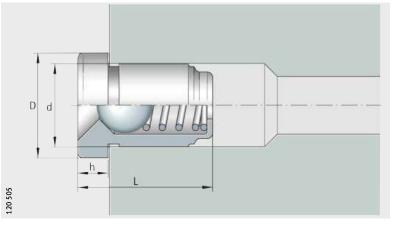

NIP DIN 71412

Figure 4 Lubrication nipple DIN 71412 type A for light range KN..-B

Taper type lubrication nipples

Taper type lubrication nipple	Dimensions			
	S	d	L	h
	h13			j16
	mm	mm	mm	mm
NIP DIN 71412-AM6	7	M6	16	3
NIP DIN 71412-AM8×1	9	M8×1	16	3


NIP DIN 3405

00019C24

Figure 5 Alternative lubrication nipple DIN 3405 type A for light range KN..-B

Funnel type lubrication nipples

Funnel type lubrication nipple	Dimensions			
	S h13 mm	d mm	L mm	h j16 mm
NIP DIN 3405-AM6	7	M6	9,5	3
NIP DIN 3405-AM8×1	9	M8×1	9,5	3

NIPA

Figure 6 Lubrication nipple for compact range KH, machined range KB, plain bearing range PAB

Lubrication nipples

Lubrication nipple	Dimensions				
	D mm	d mm	L mm	h mm	
NIPA1	6	4	6	1,5	
NIPA2	8	6	9	2	

Lubrication

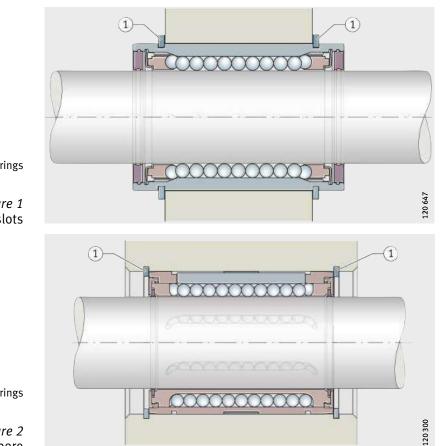
Application in special environments	In vacuum applications, lubricants with low vapourisation rates are required in order to maintain the vacuum atmosphere. In the foodstuffs sector and clean rooms, special requirements are also placed on lubricants in relation to emissions and compatibility. For such environmental conditions, please consult us.
Oil lubrication	Oil lubrication should be used in preference if heat is to be dissipated and contaminants are to be carried out of the bearing by the lubricant. This advantage should be set against the increased design work required (lubricant feed, sealing).
Suitable oils	 As a function of the load case, we recommend the following oils: for low to moderate loads (C/P > 15): hydraulic oils HL to DIN 51524 and oils CL to DIN 51517 in the viscosity range ISO-VG 10 to ISO-VG 22 for high loads (C/P < 8): hydraulic oils HLP to DIN 51524 and oils CLP to DIN 51517 in the viscosity range ISO-VG 68 to ISO-VG 100.

Design of bearing arrangements

The good running characteristics of shaft guidance systems are dependent not only on the bearings. The geometrical and positional tolerances of the adjacent construction also play a significant role. The higher the accuracy to which the adjacent construction is produced and assembled, the better the running characteristics.

Location Linear ball bearings KH

Linear ball bearings KN..-B, KB, KS and plain bearings PAB Linear ball bearings KH and KH..-PP are pressed into the housing bore. This provides axial and radial location. No additional means of location are required.


Linear ball bearings KN..-B, KB, KS and plain bearings PAB require axial location.

Linear ball bearings KB and plain bearings PAB can be located by means of retaining rings or by the adjacent construction, *Figure 1* to *Figure 3*, page 34.

Linear ball bearings KN..-B and KS can be located in accordance with *Figure 2* and *Figure 3*, page 34.

Linear ball bearings KN..-B can also be located by means of a screw, *Figure 4*, page 34.

The series KN..-B and KS should not be located by means of shaft retaining rings according to *Figure 1*. This could impair the function of the bearing.

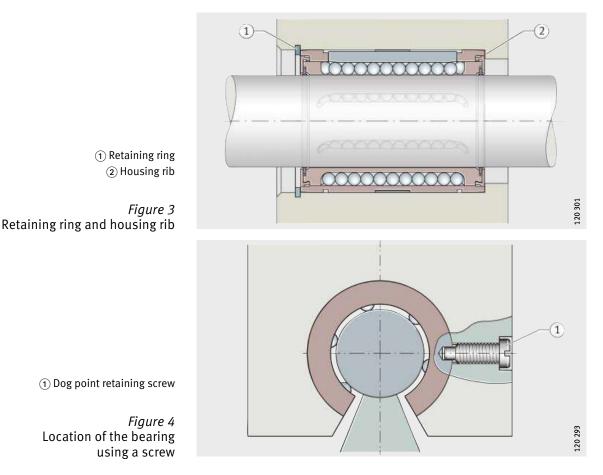
1 Retaining rings

Figure 1 Retaining rings in the bearing slots

① Retaining rings

Figure 2 Retaining rings in the housing bore

Design of bearing arrangements

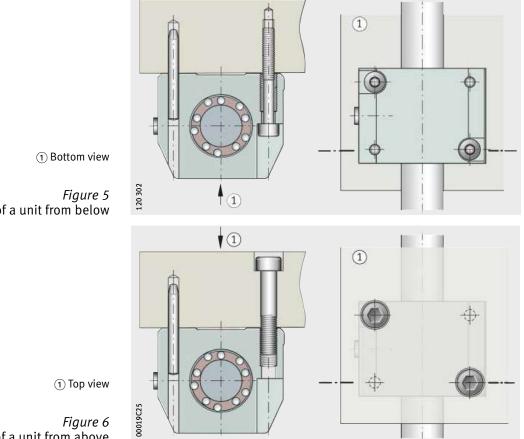

Linear ball bearings KNO..-B, KBO and plain bearings PABO

İ.

Linear ball bearings KNO..-B, KBO and plain bearings PABO must be axially located.

These bearings are located by external means. A dog point screw should preferably be used for location, *Figure 4*. Grub screws are also suitable.

The locating screw must not be allowed to deform the bearing. The screw must be secured against loosening.



Linear ball bearing and housing units

Linear ball bearing and housing units and linear plain bearing units are screw mounted into or through the fixing holes, Figure 5 and Figure 6.

Location of the units by means of dowels is only necessary in rare cases, but can be achieved easily by drilling out the centring holes.

Location of a unit from below

Location of a unit from above

Design of bearing arrangements

Sealing Clean raceways are necessary in order to prevent premature failure of the shaft and bearing. The bearing position should therefore always be sealed.

Gap seals or contact seals

The seals for the bearing series are shown in the table.

Gap seals protect the bearings against coarse contaminants. Contact seals give protection against fine contaminants and also retain the grease in the bearing.

Linear ball bearings and linear plain bearings with contact seals have the PP, example KH..-PP.

If the bearing and shaft are in a highly aggressive environment, it is recommended that the guidance system should be provided with additional protection by means of bellows or telescopic covers.

Seals for bearings and units

Series ¹⁾	Seal				
	Open design	Gap seals	Contact seals		
КН	•	_	•		
KNB, KNOB	-	•	•		
KS, KSO	-	•	•		
КВ, КВО	-	•	•		
PAB, PABO	-	-	•		

• Available design.

¹⁾ All linear bearing units have contact seals.

Operating clearance

Tolerance and operating clearance

The operating clearance of linear bearings is defined by the selection of shaft and housing tolerance, see tables, page 38.

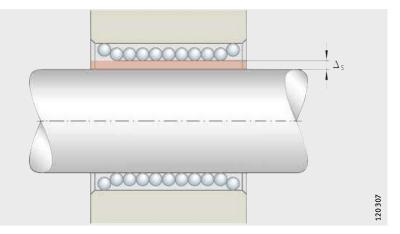
The operating clearance of linear bearing units is defined either by the shaft or, in the case of slotted housings, is set by means of the adjustment screw.

In the case of non-rigid housings, tests must be carried out in order to achieve the required operating clearance by means of the housing and shaft tolerances.

For adjustment of the operating clearance see page 43.

Linear bearings, linear bearing and	Designation	Tolera Shaft	nce Bore	Operating clearance	
housing units		onare	20.0		
Compact range	КН	See ta	ble, pa	ge 38	
	КGНК, КТНК	h6	-	Standard	
Light range	KNB, KNOB	h6	H7	Clearance-free	
Heavy duty range	KS, KSO	h6	H7	Clearance-free	
	KGSNG, KTSG, KGSNO, KTSO, KGSC, KTFS	h6	_	Slight preload	
	KGSNS, KTSS, KGSNOS, KTSOS, KGSCS	-	-	Adjustable by means of screw	
Machined range	КВ	See ta	ble, pa	ge 38	
	KBS, KBO				
	KGB, KGBA, KTB, KGBO, KTBO	h6	_	See table, page 38	
	KGBS, KGBAS, KGBAO	-	-	Adjustable by means of screw	
Plain bearing range	PAB, PABO	h7	H7	Standard	
	PAGBA, PAGBAO	h7	-	Standard	

Tolerance and operating clearance


i

Mounting tolerances and operating clearance

The theoretically possible operating clearance for the individual series is shown in the following tables and *Figure 1*.

Operating clearance for KH, KNB, KNOB	Mounting tolerance		Operating clearance All sizes						
	Shaft	Bore							
	h6	H7, K7	1 0					Steel/ aluminium	
	j5	H6, K6	Operating clearance smaller than normal					Steel/ aluminium	
Operating clearance for KS, KSO	Mounting tolerance		Size and operating clearance						
	Shaft	Bore	12 μm	16 μm	20 μm	25 μm	30 µm	40 μm	50 μm
	h6	H6	+36 -8	+34 -10	+37 -12	+34 -15	+29 -20	+33 -22	+30 -25
	h6	H7	+44 -8	+42 -10	+46 -12	+43 -15	+38 -20	+44 -22	+41 -25
	h6	JS6	+29 -14,5	+27,5 -16,5	+29 -20	+26 -23	+21 -28	+23,5 -31,5	+20,5 -34,5
Operating clearance for KB tolerance			Size and operating clearance						
	Shaft	Bore	12	16	20	25	30	40	50
			μm	μm	μm	μm	μm	μm	μm
	h6	H6 (H7)	+19 0	+20 -1	+22 -1	+24 -1	+24 -1	+29 -2	+29 -2
Operating clearance for KBS, KBO	Mounti toleran	0	Size and operating clearance						
	Shaft	Bore	12	16	20	25	30	40	50

	olerand								
S	Shaft	Bore	12	16	20	25	30	40	50
			μm	μm	μm	μm	μm	μm	μm
h	16	H6	+50 0	+51 -1	+60 -1	+62 -1	+62 -1	+74 -2	+74 -2
h	16	H7	+58 0	+59 -1	+69 -1	+71 -1	+71 -1	+85 -2	+85 -2
h	16	JS6	+43,5 -6,5	+44,5 -7,5	+52 -9	+54 -9	+54 -9	+64,5 -11,5	+64,5 -11,5

 $\Delta_{\rm S}$ = operating clearance

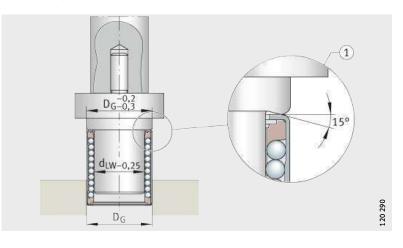
Figure 1 Operating clearance

Mounting

The bearings should only be removed from their packaging immediately before mounting. Bearings with dry preservative should be protected against corrosion immediately after removal from the packaging.

The mounting area and the adjacent construction must be clean. Contamination impairs the accuracy and operating life of the guidance systems.

The bearings must not be tilted.


In the case of sealed bearings with a segment cutout, it must be ensured at all costs that the ends of the seal lips are not turned inside out (pay attention to the packing slip).

Mounting of bearings Linear ball bearings KH

Linear ball bearings KH are pressed into the housing bore using a pressing mandrel, *Figure 1*. The mandrel dimensions must be in accordance with *Figure 1*.

The marked end face of the linear ball bearing should be in contact with the flange of the mandrel.

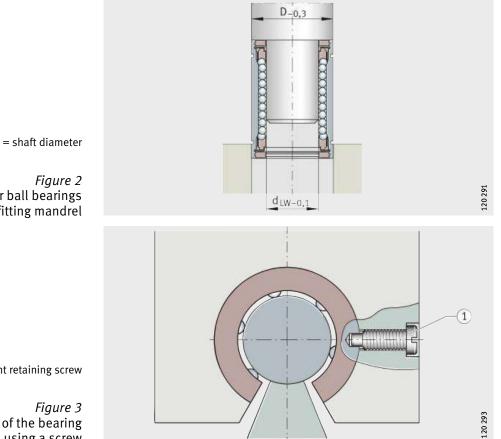
Linear ball bearings can be mounted more easily if the outside surface is greased.

d_{LW} = shaft diameter D_G = housing bore

 $\textcircled{1} \mathsf{Detail}$

İ

Figure 1 Pressing in of linear ball bearings KH


Mounting

Linear ball bearings KN..-B,KNO..-B, KB, KBS, KBO, KS, KSO and linear plain bearings PAB, PABO

Smaller bearings of these series can be slid into the housing bore by hand. For larger bearings, it is advisable to use a mounting mandrel, Figure 2.

The bearings are then located by means of retaining rings or a screw, Figure 3.

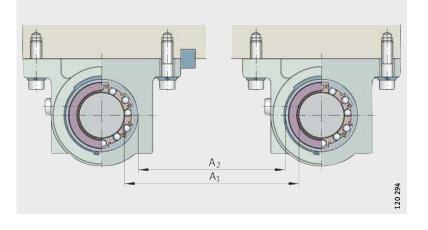
In the case of all bearings located by means of a screw, it must be ensured that the screw does not deform the bearing and the screw is secured against loosening.

d_{LW} = shaft diameter

Mounting of linear ball bearings using fitting mandrel

(1) Dog point retaining screw

Location of the bearing using a screw


Alignment of bearings and shafts Bearings arranged in series

Bearings arranged in parallel

Bearings arranged in series should be aligned with a continuous shaft, positioned against a stop and then screw mounted firmly in place.

Bearings arranged in parallel are aligned by measuring the spacing between the shafts (A_1) or between the bearing outside diameters (A_2) , *Figure 4*. This spacing can also be defined by means of spacers.

The first shaft is set (datum shaft) and screw mounted. The second shaft is aligned by moving the table to achieve the required spacing.

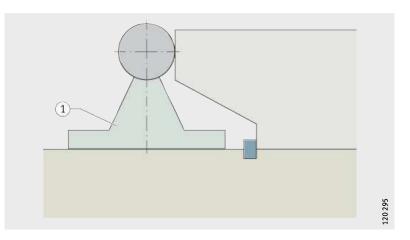
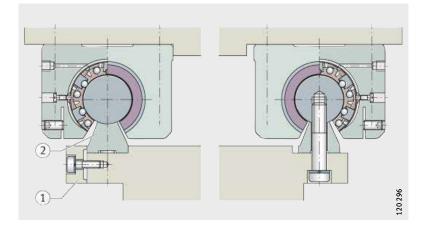

 $\label{eq:A1} \begin{array}{l} A_1 = \text{spacing between} \\ \text{the shafts} \\ A_2 = \text{spacing between} \\ \text{the bearing outside diameters} \end{array}$

Figure 4 Alignment of bearings arranged in parallel

Mounting


Very long guidance systems with supported shaft

In very long guidance systems with supported shaft, one shaft and support rail unit is first aligned by means of the shaft and screw mounted firmly in place in stages (datum shaft), *Figure 5*. The procedure described in section Bearings arranged in parallel is then carried out.

Only one row of bearings arranged in series should be set clearance-free or preloaded. The bearings parallel thereto should have a substantial operating clearance.

Clamp the datum support rail against a stop, *Figure 6*.

(1) Shaft and support rail unit

Figure 5 Alignment of a shaft and support rail unit by means of the shaft

Guidance systems with clearance-free or preloaded bearings

Parallel shaft and support rail units

Stop
 Datum support rail

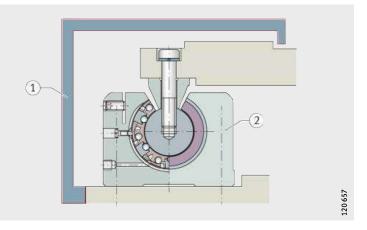
Figure 6

Clamping of the support rail when using two shaft and support rail units TSUW

Setting the operating clearance Setting bearings clearance-free

the sh

Setting the preload


Suspended arrangement of guidance system

In the case of linear ball bearings KBS and slotted housings, the operating clearance can be adjusted. The screw must be adjusted until resistance to further rotation can be felt between the shaft and bearing.

The adjusted bearing should not be rotated any further on the shaft.

Preloaded bearings are set clearance-free on a master shaft that is smaller than the actual shaft in the application by the amount of the preload dimension.

If the guidance system is in a suspended arrangement, a drop guard (1) is recommended, *Figure 7*.

Drop guard
 Mounting position 180°

Figure 7 Suspended shaft guidance system with drop guard

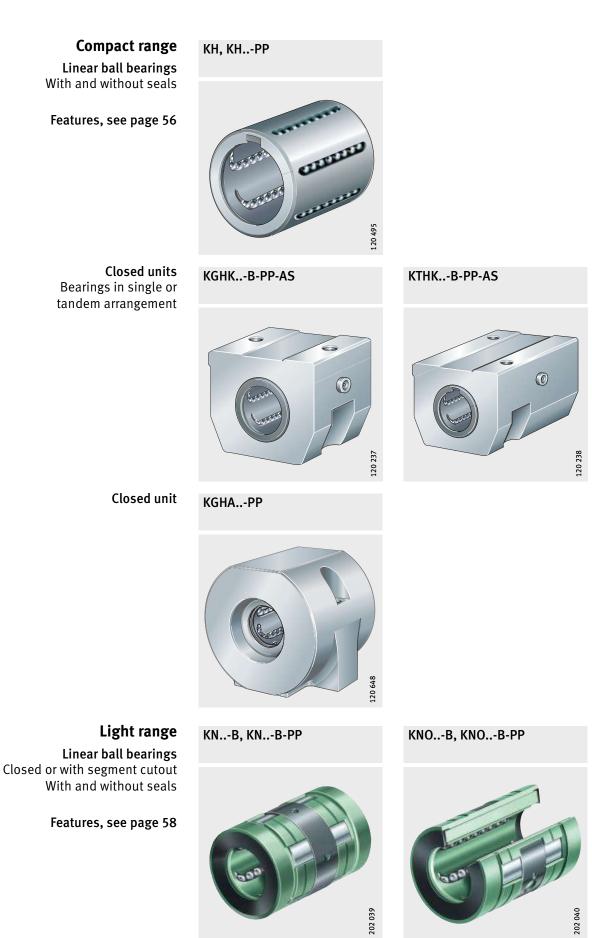
Compact range Light range Heavy duty range Machined range Plain bearing range

Matrix for preselection of linear bearings and linear bearing and housing units

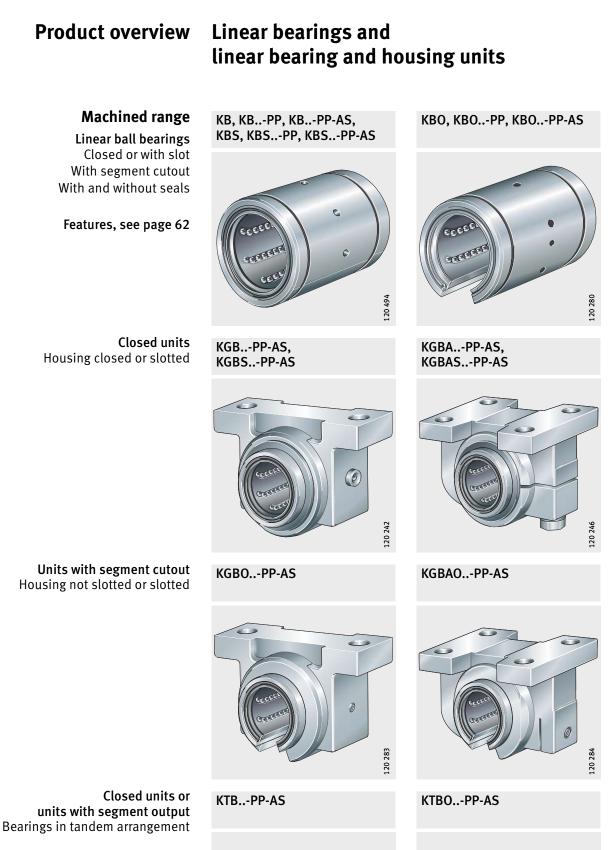
Linear bearings and	For s	haft dia	meter d	_{LW} in m	m	
linear bearing and housing units	06	08	10	12	14	16
Compact range						
KH, KHPP	•	•	•	•	•	•
KGHKPP-AS	•	•	•	•	•	•
KTHKPP-AS	_	-	-	•	-	•
KGHAPP	_	-	-	-	-	•
Light range				-	<u> </u>	
KNB KNB-PP KNOB KNOB-PP	-	-	-	•	-	•
Heavy duty range		-	+	-	-	-!
KS, KSPP	-	-	-	•	-	•
KSO, KSOPP	-	-	-	•	-	•
KGSNGPP-AS	-	-	-	•	-	•
KGSNSPP-AS	_	-	-	•	-	•
KTSGPP-AS	_	_	_	•	-	•
KTSSPP-AS	_	-	-	•	-	•
KGSNOPP-AS	_	_	-	•	-	•
KGSNOSPP-AS	_	_	_	•	-	•
KTSOPP-AS	_	_	_	•	-	•
KTSOSPP-AS	_	-	-	•	-	•
KGSCPP-AS		_	_	•	_	•
KGSCSPP-AS		_	_	•	_	•
KTFSPP-AS		_	_	•	-	•
Machined range	<u>I</u>		_	_		
KB, KBS, KBO KBPP, KBSPP KBPP-AS KBSPP-AS KBOPP-AS KGBSPP-AS KGBSPP-AS KGBAPP-AS KGBAPP-AS KGBAOPP-AS KFBB-PP-AS KTBPP-AS KTBOPP-AS	-	-	-	•	-	•
Plain bearing range						
PABPP-AS PAGBAPP-AS PAGBAOPP-AS PAGBAOPP-AS	-	_	-		_	•

Definition of symbols

- +++ Very good ++ Good
- ++ Good+ Satisfactory
- Available


for shaft diameter


Linear bearings KH, KN..-B, KNO..-B, KS, KSO with the suffix PP are sealed on both sides.


Linear bearings with the suffix PP-AS are sealed on both sides and can be relubricated.

					Design		Characteri	stics										
20	25	30	40	50	Closed	Segment cutout	Feature	Load carrying capacity	Precision	Self- alignment ′	Adjustable	Description, page						
•					КН	_	Low	+	+	-		53, 56						
•	•	•	•	•			section	+	+	_	_	55,50						
•	•	•	•	•	_		height											
•	•	•	•	-														
-	1-	<u> </u>	1-	_			1	1										
•	•	•	•	•	KNB	KNOB	Robust design	+	+	up to ±30	all	53, 58						
							1			1	T	1						
•	•	•	•	•	KS	KSO	High load	++	++	up to ± 40	all	53,60						
•	•	•	•	•	_		capacity											
•	•	•	•	•														
•	•	•	-	-														
•	•	•	-	_														
•	•	•	•	•														
•	•	•	•	•	-													
•	•	•	-	-														
٠	•	•	-	-														
•	•	•	•	•														
•	•	•	•	•														
•	•	•	-	-														
•	•	•	•	•	КВ	КВО	High	+	+++	-	KBS	53, 62						
							precision											
•	•	•	•	•	PAB	PABO	Plain bearings	+++	++	-	-	53,64						
							20011155											

Product overview Linear bearings and linear bearing and housing units

0

120244

136 496

PAGBAO..-PP-AS

136 268

136 236

Plain bearing range Linear plain bearings Closed or with segment cutout Sealed

Features, see page 64

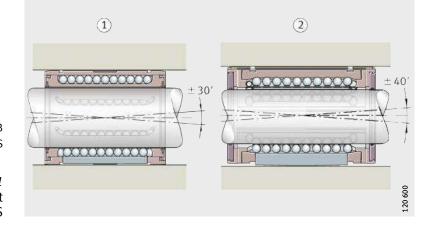
Closed unit

Housing with flange

PAGBA..-PP-AS

PAB..-PP-AS

Linear plain bearing and housing units Closed or with segment cutout


Features Linear bearings and linear bearing and housing units are available in the compact, light, heavy duty, machined and plain bearing range. The bearings can support high loads while having a relatively low mass and allow the construction of linear guidance systems with unlimited travel.

Each series has highly specific characteristics that precisely define it as suitable for particular applications. These may include, for example, requirements for compensation of misalignments, low-friction running, high accelerations and travel velocities or long operating life.

The range, which has been constructed and expanded in accordance with a modular concept, provides the best technical and economic solution, in relation to each application, for bearing arrangements with shaft guidance systems.

Linear bearings Linear ball bearings and linear plain bearings are available in open or closed designs. The open design has a segment cut out and is intended for supported shafts. Several series allow, in conjunction with the corresponding housings, adjustment of the radial clearance in order to achieve clearance-free or preloaded guidance systems.

Compensation of misalignment Misalignment can be caused by tolerance defects, mounting errors or inaccuracies in the adjacent construction. Linear ball bearings of the series KN..-B and KNO..-B can compensate static misalignment of up to $\pm 30'$, linear ball bearings of the series KS and KSO can compensate static misalignment of up to $\pm 40'$, Figure 1.

1 KN..-B 2 KS

Figure 1 Compensation of misalignment by KN..-B and KS

	Due to the self-alignment function, the balls run without difficulty into the load zone. At the same time, the load distribution over the whole ball row is more uniform. This leads to smoother running, allows higher accelerations and prevents overloading of the individual balls.	
	Overall, this means that the bearings can achieve higher loads and a longer operating life; if necessary, the adjacent construction can be designed to be smaller and more economical.	
!	In order to fully utilise the basic load ratings given in the dimension table, the shaft raceway must be hardened (670 HV + 165 HV) and ground. The indications in section Design of bearing arrangements must be observed, page 33.	
Linear bearing and housing units	Linear ball bearings and plain bearings are also available in conjunc- tion with INA housings as complete bearing units. The linear bearing is located in the housing by means of a radial fixing screw to prevent axial displacement.	
	The housings are made from a high rigidity, high strength aluminium alloy that allows the full load carrying capacity of the bearings fitted to be utilised. In the machined series, pressure diecast housings are also available.	
	Due to the comparatively low total mass, the units are particularly suitable for reduced mass designs with high loads and where higher accelerations and travel velocities are required.	
Simple location	Threaded or counterbored holes in the housing allow straightforward screw mounting on the adjacent construction, if necessary from below.	- E3
	For rapid alignment, the housings have a locating edge. This also prevents distortion of the linear bearings when the housings are being mounted.	< C
	Centring holes allow rapid additional location of the housings by dowels on the adjacent construction.	

Housing designs	The housings are available in closed design, with a segment cutout and in open, slotted and tandem versions (with and without a centring collar).
Closed design	In this variant, the bearings and housings are closed. As a result, high precision standard guidance systems with a fixed enveloping circle can be easily achieved.
With segment cutout	Open designs with a segment cutout are used where, in the case of long guidance systems, the shaft must be supported and the bearing arrangement must be highly rigid.
Slotted design	Closed designs and designs with a segment cutout are also available in several series with a slot. Slotted variants are suitable for clearance-free or preloaded guidance systems. The operating clearance is set by means of an adjusting screw.
Tandem design	The tandem version contains two linear bearings. As a result, the units have particularly high load carrying capacity. Tandem ball bearing and housing units are available in open and closed designs. Both variants are also available in the named design with a slot.
With centring collar	For special applications, there is also a tandem version with a centring collar for locating bores to H7.
Highly cost-effective	As a result of volume production in large quantities, the complete units are normally considerably more economical than customers' own designs.
Sealing	The bearings are available in an open version and with contact seals on both sides (suffix PP). The linear bearings of type KH, KNB and KB have seals with two seal lips on their end faces; the outer lip prevents the ingress of contamination, the inner lip retains the lubri- cant in the bearing. The linear bearings of type KS have contact seals with one seal lip.

Lubrication Due to the initial greasing with a high quality grease and the integral lubricant reservoir, the linear bearings are maintenance-free for many applications; if necessary, however, they can be relubricated. Linear ball bearings can be lubricated, depending on the design, via the openings in the outer ring or radial holes arranged in the centre of the bearing.

> In the units, lubrication is carried out via a separate lubrication nipple in the housing; location of the bearing in the housing and the relubrication devices are thus separate from each other.

The bearings and housings can be used at operating temperatures **Operating temperature** from $-30 \degree C$ to $+80 \degree C$.

with the linear bearing fitted.

Operating limits

The table shows the operating limits for linear bearings. Once the interrelationships of bearing size and design, load, operating clearance, location of bearings and lubrication have been checked, it may be possible in individual cases to use higher values. In this case, please contact us.

Linear bearing and housing units should be allocated in accordance

Dynamic values for linear bearings

Acceleration,	Linear bearing series							
velocity	КН	KNB	КВ	KS	PAB			
Acceleration in m/s ²	50	50	50	100	50			
Velocity in m/s	2	up to 5	up to 5	up to 5	up to 3			

In the case of linear ball bearings with seals, suffix PP, velocities up to 2 m/s are permissible.

Suffixes for available designs: see table.

Suffixes

Available designs

Suffix	Description	Design
PP	Lip seals on both sides	Standard
PPL	Sealing strips on bearings with segment cutout	Available by agreement
AS	Bearing and unit with relubrication facility	Standard

Compact range	Linear ball bearings KH and linear ball bearing and housing units of the compact range have a small radial design envelope and are particularly economical. Their low section height automatically makes them attractive for applications in which only a small amount of radial space is available. Due to the closed design, they are suitable for use on shafts.
Linear ball bearings	The bearings have an outer ring with openings. This contains a ball and cage assembly with a plastic cage. The outer ring is formed and hardened. The balls undergo return travel along the openings in the outer ring.
Seals	The bearings are available in an open version and with lip seals on both sides (suffix PP). The end face seals have two seal lips; the outer lip prevents the ingress of contamination, the inner lip retains the lubricant in the bearing.
Linear ball bearing and housing units	Linear ball bearing and housing units of the compact range are available with one integral bearing and, in the tandem version with particularly high load carrying capacity, with two bearings. The housings are made from high strength aluminium.
Anti-corrosion protection	The housings are two-piece components made from sheet steel with a Corrotect [®] coating. The bearings and housing parts are packed separately. The bearing is firmly seated once it is mounted in the housing.
Further information	 Further information is given on the following pages: dimension tables, see page 67 shafts, see page 104 shaft and support rail units, see page 128 accessories, see page 144.

Linear ball bearings and linear ball bearing and housing units, compact range

Series ¹⁾	Feature	G
КН	Linear ball bearings Not sealed	forescoread
KHPP	Linear ball bearings Lip seals on both sides	100000003
KGHKPP-AS	Closed design Relubrication facility	
KTHKPP-AS	Closed design Tandem design Relubrication facility	
KGHAPP	Unit Closed design	O

¹⁾ $\overline{\text{Bearings}}$ with the suffix PP have lip seals on both sides.

Light range	The light range is available as linear ball bearings KNB of a closed design and as linear ball bearings KNOB with a segment cutout.
	In order to compensate misalignments arising from manufacturing tolerances, mounting errors and shaft deflection, the linear bearings of series KNB are self-aligning up to $\pm 30'$.
	Their robust construction allows operation even under aggressive operating conditions.
	The series KNB is of a closed construction and is designed for use on shafts. KNOB has a segment cutout and is used with shaft and support rail units.
Linear ball bearings	Linear ball bearings KNB and KNOB comprise a plastic cage with inserted raceway plates. The plates are supported in the housing bore by means of a retaining ring. Due to the retaining ring, the plates can "rock" and thus compensate for static misalignments.
Seals	The bearings are available in an open version and with lip seals on both sides (suffix PP). The end face seals have two seal lips; the outer lip prevents the ingress of contamination, the inner lip retains the lubricant in the bearing.
Further information	Further information is given on the following pages: dimension tables, see page 74 shafts, see page 104
	 shaft and support rail units, see page 128 accessories, see page 144.
	accessories, see page 144.

Linear ball bearings, light range

Series ¹⁾	Feature	Gunna
KNB KNB-PP	Linear ball bearings Closed design Self-aligning With or without lip seals	Sexrements)
KNOB KNOB-PP	Linear ball bearings With segment cutout Self-aligning With or without lip seals	میں اور

 $^{1)}\ \overline{\mbox{Bearings}}\ \mbox{with the suffix PP have lip seals on both sides.}$

Heavy duty range Linear ball bearings of the heavy duty range KS and KSO and the corresponding ball bearing and housing units have particularly high load carrying capacity and have an angular adjustment facility for compensation of misalignments. They have very good running characteristics. Linear ball bearings KS and KSO comprise a plastic cage with loosely Linear ball bearings retained segments. The double row segments with crowned raceway plates can realign themselves in all directions and thus compensate misalignments. Since the complete segment undergoes realignment, there is no disruption to the recirculation of the balls. This results in uniformly low displacement resistance. The series KS is of a closed construction and is designed for use on shafts. KSO has a segment cutout and is used in conjunction with shaft and support rail units. Seals The bearings are available with contact seals or gap seals. The contact seals on the end faces have two seal lips; the outer lip prevents the ingress of contamination, the inner lip retains the lubricant in the bearing. Linear ball bearing and Linear ball bearing and housing units of the heavy duty range are housing units available with one integral bearing and, in the tandem version with particularly high load carrying capacity, with two bearings. The housings are made from high strength aluminium.

The housings are available in a closed design, with a segment cutout for supported shafts and with or without a slot. In designs with a slot, the radial clearance can be adjusted by means of an adjusting screw.

All series have a locating edge and centring holes for dowel holes. The bearings are sealed on both sides, they have an initial greasing and can be relubricated via a lubrication nipple in the housing.

Further information
Further information is given on the following pages:
dimension tables, see page 76
shafts, see page 104
shaft and support rail units, see page 128

accessories, see page 144.

Linear ball bearings and linear ball bearing and housing units, heavy duty range

Series ¹⁾	Feature	Gan
KS KSPP	Linear ball bearingsSelf-aligningWith or without lip seals	90000
KSO KSOPP	 Linear ball bearings With segment cutout Self-aligning With or without lip seals 	
KGSNGPP-AS	 Closed design Relubrication facility 	
KGSNSPP-AS	 Closed design Slotted housing Relubrication facility 	
KTSGPP-AS	 Closed design Tandem arrangement Relubrication facility 	
KTSSPP-AS	 Closed design Tandem arrangement Slotted housing Relubrication facility 	
KGSNOPP-AS	 With segment cutout Relubrication facility 	
KGSNOSPP-AS	 With segment cutout Slotted housing Relubrication facility 	
KTSOPP-AS	 With segment cutout Tandem arrangement Relubrication facility 	
KTSOSPP-AS	 With segment cutout Tandem arrangement Slotted housing Relubrication facility 	
KGSCPP-AS	 Open at side Relubrication facility 	
KGSCSPP-AS	 Open at side Slotted housing Relubrication facility 	
KTFSPP-AS	 With centring collar Tandem arrangement Relubrication facility 	

 $^{1)}$ Bearings with the suffix PP have lip seals on both sides.

Machined range	Linear ball bearings of the machined range KB, KBS and KBO and the corresponding linear ball bearing and housing units are high precision and particularly rigid. They have excellent running characteristics.
Linear ball bearings	Linear ball bearings KB, KBS and KBO comprise a hardened and ground outer ring in which a ball and cage assembly with a plastic cage is integrated. The balls are guided with high precision throughout the return area by a special spring washer. This ensures that the displacement resistance remains uniformly low even under difficult operating conditions and irrespective of the mounting position. The series KB is of a closed construction and is designed for use on shafts. KBO has a segment cutout and is used in conjunction with shaft and support rail units. KBS has a slot for adjustment of
Soals	the radial clearance.
Seals	The bearings have contact seals or gap seals.
Linear ball bearing and housing units	Linear ball bearing and housing units of the machined range are available with one integral bearing and, in the tandem version with particularly high load carrying capacity, with two bearings. The housings are made from high strength aluminium or are pressure diecast. The housings are available in a closed design, with a segment cutout for supported shafts and with or without a slot. In designs with a slot, the radial clearance can be adjusted by means of an adjusting screw.
	All series have a locating edge and centring holes for dowel holes. The bearings are sealed on both sides, they have an initial greasing and can be relubricated via a lubrication nipple in the housing.
Further information	 Further information is given on the following pages: dimension tables, see page 90 shafts, see page 104 shaft and support rail units, see page 128 accessories, see page 144.

Linear ball bearings and linear ball bearing and housing units, machined range

Series ¹⁾²⁾	Feature	Gunn
KB KBPP KBPP-AS	 Linear ball bearings With or without lip seals depending on the design Relubrication facility 	900000
KBS KBSPP KBSPP-AS	 Linear ball bearings With or without lip seals depending on the design Relubrication facility Slotted design 	
KBO KBOPP KBOPP-AS	 Linear ball bearings With or without lip seals depending on the design Relubrication facility With segment cutout 	
KGBPP-AS	Closed designRelubrication facility	III C
KGBSPP-AS	 Closed design Slotted housing Relubrication facility 	F.C.
KGBOPP-AS	With segment cutoutRelubrication facility	
KGBAPP-AS	 Closed design Relubrication facility 	
KGBASPP-AS	Closed designSlotted housingRelubrication facility	
KGBAOPP-AS	With segment cutout Relubrication facility	
KTBPP-AS	 Closed design Tandem arrangement Relubrication facility 	
KTBOPP-AS	With segment cutout Tandem arrangement Relubrication facility	
KFBB-PP-AS	Closed design Relubrication facility	

 $^{1)}\ \overline{\mbox{Bearings}}$ with the suffix PP have lip seals on both sides.

²⁾ Bearings and units with the suffix AS can be relubricated.

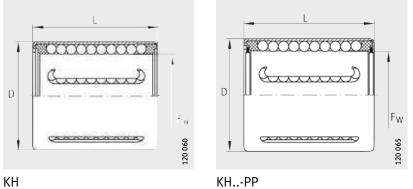
Plain bearing range	Linear plain bearings PAB and PABO and the corresponding plain bearing and housing units have very high load carrying capacity, are extremely robust and have particularly low running noise. They have excellent emergency running characteristics.
Linear plain bearings	Linear plain bearings PAB and PABO comprise an outer ring made from high strength aluminium into which plain bearing bushes PAPP20 are fixed by adhesive.
	The series PAB is of a closed construction and is designed for use on shafts. PABO has a segment cutout and is used in conjunction with shaft and support rail units.
!	Plain bushes must not be used in conjunction with the special coating Corrotect [®] . Crevice corrosion may occur that would impair the function of the bearing.
Further information	 Further information is given on the following pages: dimension tables, see page 100 shafts, see page 104 shaft and support rail units, see page 128

accessories, see page 144.

Linear plain bearings and linear plain bearing and housing units, plain bearing range

Series ¹⁾	Feature	
PABPP-AS	Closed design Lip seals on both sides Relubrication facility	di
PABOPP-AS	With segment cutout Lip seals on both sides Relubrication facility	Lanua
PAGBAPP-AS	Closed design Relubrication facility	
PAGBAOPP-AS	With segment cutout Slotted housing Relubrication facility	-

 $^{1)}\ \overline{\mbox{Bearings}}$ with the suffix PP have lip seals on both sides.

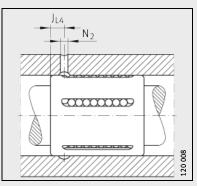


9

Linear ball bearings

Open or sealed **Relubrication facility**

Dealar		Maga	Dimen			Marin	41. m m	Basic load ratings ¹⁾					
Designa	lion	Mass	Dimei	nsions		Moun dimer	isions	Basic loa					
2)	3)	m	F _W	D	L	J _{L4}	N ₂	dyn. C _{min}	stat. C _{0 min}	dyn. C _{max}	stat. C _{0 max}		
		g						Ν	Ν	Ν	Ν		
KH06	KH06-PP	7	6	12	22	4	2	340	240	390	340		
KH08	KH08-PP	12	8	15	24	6	2	410	280	475	400		
KH10	KH10-PP	14,5	10	17	26	6	2,5	510	370	590	520		
KH12	KH12-PP	18,5	12	19	28	6	2,5	670	510	800	740		
KH14	KH14-PP	20,5	14	21	28	6	2,5	690	520	830	760		
KH16	KH16-PP	27,5	16	24	30	7	2,5	890	620	1 0 6 0	910		
KH20	KH20-PP	32,5	20	28	30	7	2,5	1 1 1 0	790	1170	1010		
KH25	KH25-PP	66	25	35	40	8	2,5	2 280	1 670	2 4 2 0	2130		
KH30	KH30-PP	95	30	40	50	8	2,5	3 300	2 700	3 300	3 1 0 0		
KH40	KH40-PP	182	40	52	60	9	2,5	5 300	4 4 5 0	5 300	4 950		
KH50	KH50-PP	252	50	62	70	9	2,5	6800	6 3 0 0	6 800	7 000		

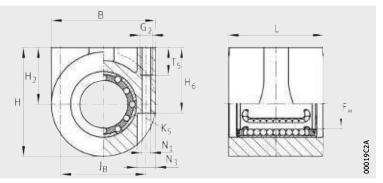


Corrosion-resistant designs have the suffix -RROC. This must be stated when ordering.

¹⁾ The basic load ratings are only valid for hardened (670 HV + 165 HV) and ground shaft raceways.

²⁾ With preservative.

³⁾ With initial greasing, sealed on both sides.


Mounting dimensions

0000000

.....

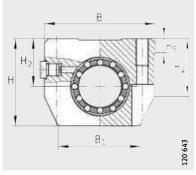
Linear ball bearing and housing units Sealed Greased

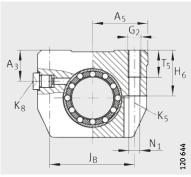
KGHA..-PP

Dimension table · Dimen	sions in mm									
Designation	Mass	Dimensions	Dimensions							
	m	F _W	H ₂	н	В	L				
	≈g		±0,015			+0,5				
KGHA16-PP	228	16	20	41	42	37				
KGHA20-PP	303	20	25	48,5	47	39				
KGHA25-PP	496	25	30	57,5	55	49				
KGHA30-PP	860	30	35	67,5	65	59				
KGHA40-PP	1 434	40	45	84	78	71				

 $^{(1)}$ The basic load ratings are only valid for hardened (670 HV + 165 HV) and ground shaft raceways.

²⁾ For fixing screws ISO 4762-8.8.
 If there is a possibility of settling, the screws should be secured against rotation.

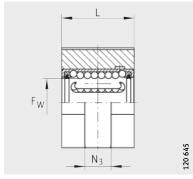




Mounting dir	Mounting dimensions												
H ₆	T ₅	J _B	G ₂	N ₁	N ₃	K ₅ ²⁾	dyn. C	stat. C ₀					
		±0,1					Ν	Ν					
27	15	32	M6	5,1	8,1	M4	890	620					
29	15	38	M6	5,1	8,1	M4	1 1 1 0	790					
35	15	46	M6	5,1	8,1	M4	2 280	1 670					
39	20	54	M8	6,7	11,1	M6	3 300	2 700					
49	20	66	M8	6,7	11,1	M6	5 300	4 4 5 0					

Linear ball bearing and housing units Sealed Greased, with relubrication facility

KGHK..-B-PP-AS


KGHK..-B-PP-AS

Dimension table · Dimer	nsions in mm								
Designation	Mass	Dimensions	;			Mounting dimensions			
	m	F _W	В	L	Н	J _B	B ₁	A ₅	
	≈g					±0,15			
KGHK06-B-PP-AS	40	6	32	22,2	27	23	25	16	
KGHK08-B-PP-AS	50	8	32	24,2	27	23	25	16	
KGHK10-B-PP-AS	70	10	40	26,2	33	29	32	20	
KGHK12-B-PP-AS	80	12	40	28,2	33	29	32	20	
KGHK14-B-PP-AS	100	14	43	28,2	36,5	34	34	21,5	
KGHK16-B-PP-AS	110	16	43	30,2	36,5	34	34	21,5	
KGHK20-B-PP-AS	150	20	53	30,2	42,5	40	40	26,5	
KGHK25-B-PP-AS	270	25	60	40,2	52,5	48	44	30	
KGHK30-B-PP-AS	400	30	67	50,2	60	53	49,6	33,5	
KGHK40-B-PP-AS	750	40	87	60,2	73,5	69	63	43,5	
KGHK50-B-PP-AS	1 250	50	103	70,2	92	82	74	51,5	

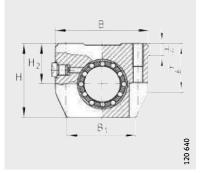
¹⁾ The basic load ratings are only valid for hardened (670 HV + 165 HV) and ground shaft raceways.

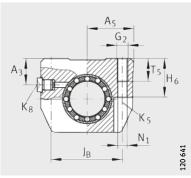
²⁾ For fixing screws ISO 4762-8.8.
 If there is a possibility of settling, the screws should be secured against rotation.

³⁾ Lubrication nipple, see page 31.

KGHK..-B-PP-AS

									Basic lo	ad ratings ¹⁾
H ₅	T ₅	H ₆	A ₃	G ₂	N ₁	N ₃	K ₅ ²⁾	K ₈ ³⁾	dyn. C	stat. C ₀
									N	N
5	9	13	9	M4	3,4	7	М3	NIPA1	340	240
5	9	13	9	M4	3,4	7	M3	NIPA1	410	280
5	11	16	11	M5	4,3	10	M4	NIPA1	510	370
5	11	16	11	M5	4,3	10	M4	NIPA1	670	510
6,9	11	18	13	M5	4,3	10	M4	NIPA1	690	520
6,9	11	18	13	M5	4,3	10	M4	NIPA1	890	620
7,4	13	22	15	M6	5,3	11	M5	NIPA2	1 1 1 0	790
9,9	18	26	17,5	M8	6,6	15	M6	NIPA2	2 280	1670
8	18	29	18	M8	6,6	15	M6	NIPA2	3 300	2 7 0 0
12,8	22	38	23	M10	8,4	18	M8	NIPA2	5 300	4 4 5 0
10,9	26	46	28	M12	10,5	20	M10	NIPA2	6 800	6 3 0 0





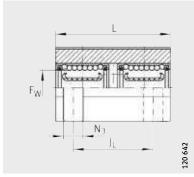
000000

.....

Linear ball bearing and housing units Tandem arrangement Sealed Greased, with relubrication facility

KTHK ..- B-PP-AS

KTHK ..- B-PP-AS


Dimension table · Dime	ensions in mn	n							
Designation	Mass	Dimensior	ıs			Mounting dimensions			
	m	F _W	В	L	Н	J _B	B ₁	A ₅	J _L ²⁾
	≈g					±0,15			±0,15
KTHK12-B-PP-AS	170	12	40	60	33	29	32	20	35
KTHK16-B-PP-AS	230	16	43	65	36,5	34	34	21,5	40
KTHK20-B-PP-AS	320	20	53	65	42,5	40	40	26,5	45
KTHK25-B-PP-AS	580	25	60	85	52,5	48	44	30	55
KTHK30-B-PP-AS	850	30	67	105	60	53	49,6	33,5	70
KTHK40-B-PP-AS	1 600	40	87	125	73,5	69	63	43,5	85
KTHK50-B-PP-AS	2 700	50	103	145	92	82	74	51,5	100

¹⁾ The basic load ratings are only valid for hardened (670 HV + 165 HV) and ground shaft raceways and where the two linear ball bearings are subjected to equal loading.

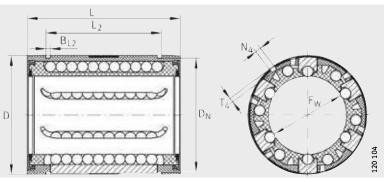
 $^{2)}\,$ Dimension J_L and lubrication hole symmetrical to the bearing length L.

³⁾ For fixing screws ISO 4762-8.8. If there is a possibility of settling, the screws should be secured against rotation.

⁴⁾ Lubrication nipple, see page 31.

KTHK..-B-PP-AS

											Basic loa	d ratings ¹⁾
H ₂ +0,011 -0,011	H ₄	H ₅	T ₅	H ₆	A ₃	G ₂	N ₁	N ₃	K ₅ ³⁾	K ₈ ⁴⁾	dyn. C N	stat. C ₀ N
17	25,1	5	11	16	11	M5	4,3	10	M4	NIPA1	1 0 9 0	1 0 2 0
19	28,1	6,9	11	18	13	M5	4,3	10	M4	NIPA1	1 4 4 0	1 2 4 0
23	29,8	7,4	13	22	15	M6	5,3	11	M5	NIPA2	1 800	1 580
27	36,6	9,9	18	26	17,5	M8	6,6	11	M6	NIPA2	3 700	3 350
30	42,7	8	18	29	18	M8	6,6	15	M6	NIPA2	5 400	5 400
39	49,7	12,8	22	38	23	M10	8,4	18	M8	NIPA2	8 600	6 900
47	62,3	10,9	26	46	28	M12	10,5	20	M10	NIPA2	11 000	12 600



10000

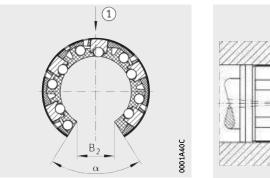
.....

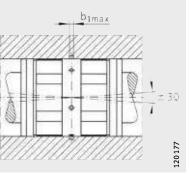
Light range

Linear ball bearings Self-aligning Closed or with segment cutout Open or sealed Relubrication facility

KN..-B-PP, KN..-B

Dimension table	e ∙ Dimensions	in mm							
Designation				Mass	Dimensi	ons		Mounting	dimensions
				m	F _W	D	L	B ₂ ²⁾	L ₂
				≈g					H13
KN12-B-PP	KN12-B	-	-	20	12	22	32	-	22,6
-	-	KNO12-B-PP	KNO12-B	20	12	22	52	6,5	-
KN16-B-PP	KN16-B	-	-	30	16	26	36	-	24,6
-	-	KNO16-B-PP	KNO16-B	20	10	20	50	9	-
KN20-B-PP	KN20-B	-	-	60	20	32	45	-	31,2
-	-	KNO20-B-PP	KNO20-B	50	20	52	45	9	-
KN25-B-PP	KN25-B	-	-	130	25	40	58	-	43,7
-	-	KNO25-B-PP	KNO25-B	110	25	40	50	11,5	-
KN30-B-PP	KN30-B	-	-	190	30	47	68	-	51,7
-	-	KNO30-B-PP	KNO30-B	160	50	47	08	14	-
KN40-B-PP	KN40-B	-	-	350	40	62	80	-	60,3
-	-	KNO40-B-PP	KNO40-B	300	40	02	80	19	-
KN50-B-PP	KN50-B	-	-	670	50	75	100	-	77,3
-	-	KNO50-B-PP	KNO50-B	570		/ /	100	22,5	-

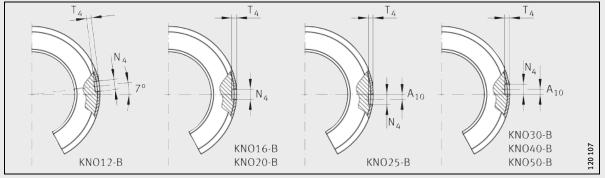

¹⁾ The basic load ratings are only valid for hardened (670 HV + 165 HV) and ground shaft raceways.


²⁾ Dimension B_2 on diameter F_W .

 $^{\rm 3)}$ Hole position symmetrical to bearing length L.

⁴⁾ Basic load rating in main load direction.

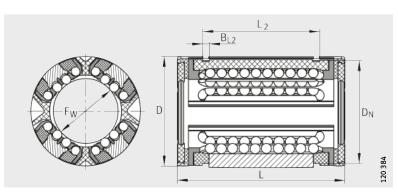
 $^{5)}$ () Main load direction



KNO..-B-PP, KNO..-B (1) $^{5)}$

Self-aligning up to $\pm 30^\prime$

						Ball rows	;	Basic load	d ratings ¹⁾		
B _{L2}	D _N	T ₄	A ₁₀	N ₄ ³⁾	α	b _{1 max}		dyn. C _{min}	stat. C _{0 min}	dyn. C _{max}	stat. C _{0 max}
					0		Quantity	Ν	Ν	Ν	Ν
1,3	21	0,7	_	- 3	-	1,5	5	730	510	870	740
-	-	0,7	-		66		4	-	-	840 ⁴⁾	640 ⁴⁾
1,3	25	0.7	-	3	-	1,5	5	870	620	1 0 4 0	910
-	-	0,7		5	68		4	-	-	1 000 4)	750 ⁴⁾
 1,6	30,7	0,9	_	3	-	2,5	6	1730	1 230	1830	1 570
_	-	0,9	-		55		5	-	-	1 740 ⁴⁾	1 240 ⁴⁾
1,85	38,5	1 /	-	3	-	2.5	6	3 100	2 2 2 0	3 2 5 0	2850
-	-	1,4	1,5	2	57	2,5	5	-	-	3 100 ⁴⁾	2 260 ⁴⁾
1,85	44,7	2.2	-	3	-	2.5	6	3750	2 850	3 950	3650
_	-	2,2	2	2	57	2,5	5	-	-	3 7 50 ⁴⁾	2 850 ⁴⁾
2,15	59,4	2,2	-	3	-	3	6	6 300	4 350	6700	5 600
-	-	2,2	1,5	ر ا	56	ر	5	-	-	6 300 ⁴⁾	4 350 ⁴⁾
 2,65	71,4	2,3	-	5	-	3	6	9 300	6 500	9800	8 300
_	-	ر,2	2,5		54		5	-	-	9 300 ⁴⁾	6 500 ⁴⁾


Fixing holes

.....

Heavy duty range

Linear ball bearings Self-aligning Closed or with segment cutout Open or sealed Relubrication facility

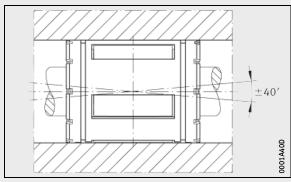
KS, KS..-PP

			Mass	Dimens	ions		Mountin	g dimensi	ons
4)	3)	4)	m	F _W	D	L	B ₂ ⁵⁾	L ₂	B _{L2}
			\approx g					H13	
KS12-PP	-	-	18	12	22	30	_	22,6	1,3
-	KS012	KSO12-PP	13	12	22	52	7,6	-	-
KS16-PP	-	-	28	16	26	26	-	24,6	1,3
-	KSO16	KSO16-PP	19	10	20	50	10,1	-	-
KS20-PP	-	-	51	20	22	4.5	-	31,2	1,6
-	KSO20	KSO20-PP	38	20	52	45	10	-	-
KS25-PP	-	-	102	25	40	EQ	-	43,7	1,85
-	KS025	KSO25-PP	75	25	40	50	12,5	-	-
KS30-PP	-	-	172	20	47	(9	-	51,7	1,85
-	KSO30	KSO30-PP	135	50	47	00	14,3	-	-
KS40-PP	-	-	335	40	62	80	-	60,3	2,15
-	KSO40	KSO40-PP	259	40	02	80	18,2	-	-
KS50-PP	-	-	589	50	75	100	-	77,3	2,65
-	KS050	KSO50-PP	454	50	15	100	22,7	-	-
	KS12-PP - KS16-PP - KS20-PP - KS25-PP - KS30-PP - KS40-PP - KS50-PP	KS12-PP - - KS012 KS16-PP - - KS016 KS20-PP - - KS020 KS25-PP - - KS025 KS30-PP - - KS030 KS40-PP - - KS040 KS50-PP -	KS12-PP - - - KS012 KS012-PP KS16-PP - - - KS016 KS016-PP KS20-PP - - - KS020 KS020-PP KS25-PP - - - KS025 KS025-PP KS30-PP - - - KS030 KS030-PP KS40-PP - - - KS040 KS040-PP KS50-PP - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	4) 3) 4) m ~g ~g KS12-PP - 18 - KS012 KS012-PP 13 KS16-PP - - 28 - KS016 KS016-PP 19 KS20-PP - - 51 - KS020 KS020-PP 38 KS25-PP - - 102 - KS025 KS025-PP 75 KS30-PP - - 172 - KS030 KS030-PP 135 KS40-PP - - 335 - KS040 KS040-PP 259 KS50-PP - - 589	4) 3) 4) m F_W ~g F_W KS12-PP - 18 12 KS12-PP - 13 12 KS16-PP - - 28 16 - KS016 KS016-PP 19 16 KS20-PP - - 51 20 - KS020 KS020-PP 38 20 - KS020 KS020-PP 38 20 KS25-PP - - 102 25 KS30-PP - - 172 30 - KS030 KS030-PP 135 40 KS40-PP - - 335 40 KS50-PP - - 589 50	4) 3) 4) m F_W D $\sim g$ F_W D $\sim g$ D KS12-PP - - 18 12 22 KS12-PP - - 18 12 22 KS16-PP - - 28 16 26 - KS016 KS016-PP 19 16 26 KS20-PP - - 51 20 32 KS25-PP - - 102 25 40 KS30-PP - - 172 30 47 KS30-PP - - 335 40 62 KS40-PP - - 335 40 62 KS50-PP - - 589 50 75		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

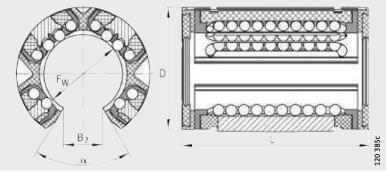
¹⁾ The basic load ratings are only valid for hardened (670 HV + 165 HV) and ground shaft raceways.

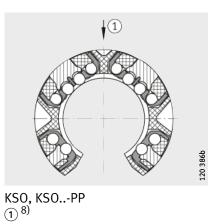
²⁾ Basic load rating in main load direction.

³⁾ With preservative, gap seals on both sides.


 $^{\rm 4)}\,$ With initial greasing, contact seals on both sides.

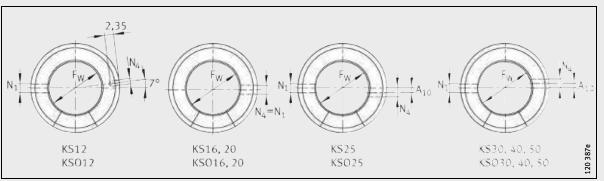
 $^{5)}\,$ Dimension $\rm B_{2}$ on diameter $\rm F_{W}.$


⁶⁾ Hole position symmetrical to bearing length L.


⁷⁾ Only one lubrication and fixing hole each in size 16 and 20.

⁸⁾ (1) Main load direction

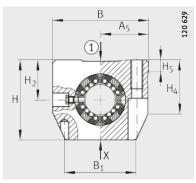
Self-aligning up to $\pm 40'$



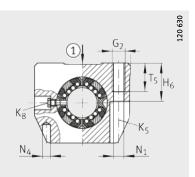
.....

KSO, KSO..-PP

					Ball rows	Basic load ra	tings ¹⁾		
D _N	A ₁₀	N1 ⁶⁾	N ₄ ⁶⁾	α	-	dyn. C _{min}	stat. C _{0 min}	dyn. C _{max}	stat. C _{0 max}
				0	Quantity	Ν	Ν	N	N
21		-	- 3	-	8	630	600	900	1 100
-	_	3	2	78	6	-	-	900 ²⁾	1 100 ²⁾
25		3 ⁷⁾	37)	-	8	1 060	950	1 4 3 0	1 5 5 0
-	_	5.7	5.7	78	6	-	-	1 430 ²⁾	1 550 ²⁾
30,7		3 ⁷⁾	3 ⁷⁾	-	8	1 780	1 600	2 200	2 310
-	_	<u>ر</u>	J .	60	6	-	-	2 200 ²⁾	2 310 ²⁾
38	1 5	3,5	3	-	8	2 700	2 4 3 0	3 950	4 300
-	1,5	5,5	2	60	6	-	-	3 950 ²⁾	4 300 ²⁾
44,7	2	3,5	3	-	8	4 650	3 970	5 900	6000
_	Z	5,5	2	57	6	-	-	5 900 ²⁾	6 000 ²⁾
59,4	1,5	3,5	3	-	8	8 800	7 200	10 200	9 600
-	1,5	ر,ر	ر	54	6	-	-	10 200 ²⁾	9 600 ²⁾
71,4	2.5	4.5	5	-	8	12 300	9700	15 100	13900
_	2,5	4,5	5	54	6	-	-	15 100 ²⁾	13 900 ²⁾



Fixing holes⁷⁾



Heavy duty range

Linear ball bearing and housing units Closed or with slot Sealed Greased, with relubrication facility

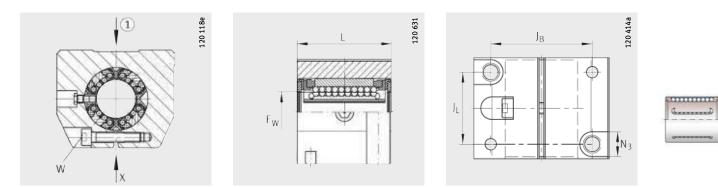
KGSNG..-PP-AS, KGSNS..-PP-AS (1)⁷⁾

KGSNG..-PP-AS, KGSNS..-PP-AS (1)7)

Dimension table · Dim	nensions in mm									
Designation		Mass	Dimensi	ions			Mountir	ng dimen	sions	
		m	F _W	В	L	Н	J _B	B ₁	A ₅	J _L ³⁾
		≈g					±0,15		±0,01	±0,15
KGSNG12-PP-AS	-	110	12	43	32	35	32	34	21,5	23
-	KGSNS12-PP-AS	100	12	45	52	22	52	54	21,5	25
KGSNG16-PP-AS	-	220	16	53	37	42	40	40	26,5	26
-	KGSNS16-PP-AS	200	10	55	57	42	40	40	20,5	20
KGSNG20-PP-AS	-	370	20	60	45	50	45	44	30	22
-	KGSNS20-PP-AS	360	20	60	45	50	45	44	50	32
KGSNG25-PP-AS	-	630	25	78	58	60	60	EO /	39	40
-	KGSNS25-PP-AS	550	25	78	58	60	60	59,4	27	40
KGSNG30-PP-AS	-	890	30	87	68	70	68	63	43,5	45
-	KGSNS30-PP-AS	730	50	07	00	70	00	65	45,5	45
KGSNG40-PP-AS	-	1 300	40	109	80	90	86	76	54	58
-	KGSNS40-PP-AS	1 350	40	108	80	90	00	70	54	00
KGSNG50-PP-AS	-	2 200	50	132	100	105	108	90	66	50
-	KGSNS50-PP-AS	2 2 5 0	50	152	100	105	100	90	00	00

 $^{1)}$ The basic load ratings are only valid for hardened (670 HV + 165 HV) and ground shaft raceways.

²⁾ Basic load rating in main load direction.


 $^{3)}\,$ Dimension J_L and lubrication hole symmetrical to the bearing length L.

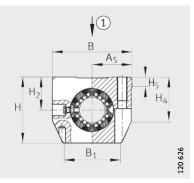
⁴⁾ Centring for dowel hole.

⁵⁾ For fixing screws ISO 4762-8.8. If there is a possibility of settling, the screws should be secured against rotation.

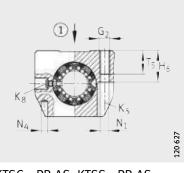
⁶⁾ Lubrication nipple. Designs and dimensions, see page 30.

⁷⁾ (1) Main load direction

KGSNG..-PP-AS,KGSNS..-PP-AS


KGSNS..-PP-AS

												Ball rows	Basic loa ratings ¹⁾	1d 2)
H ₂	H ₅	H ₄	T ₅	H ₆	G ₂	N ₁	N4 ⁴⁾	N ₃	K ₅ ⁵⁾	K ₈ ³⁾⁶⁾	Width across flats		dyn. C _{max}	stat. C _{0 max}
+0,008 -0,016											W	Quantity	Ν	N
18	5,4	26,6	11	16,5	M5	4,3	4	8	M4	NIP4MZ	- 2,5	8	900	1100
22	6,9	29,3	13	21	M6	5,3	4	10	M5	NIP4MZ	- 3	8	1 430	1 5 5 0
25	7,4	34,1	18	24	M8	6,6	5	11	M6	NIP4MZ	- 4	8	2 200	2310
30	8,3	41,5	22	29	M10	8,4	6	15	M8	NIP5MZ	- 5	8	3 950	4 300
35	9,3	46,2	22	34	M10	8,4	6	15	M8	NIP5MZ	- 5	8	5 900	6000
45	11,7	57,6	26	44	M12	10,5	8	18	M10	NIP5MZ	- 6	8	10 200	9600
50	10,6	62	35	49	M16	13,5	10	20	M12	NIP6MZ	- 8	8	15 100	13900



Heavy duty range

Linear ball bearing and housing units Tandem arrangement Closed or with slot Sealed Greased, with relubrication facility

KTSG..-PP-AS, KTSS..-PP-AS $(1)^{7)}$

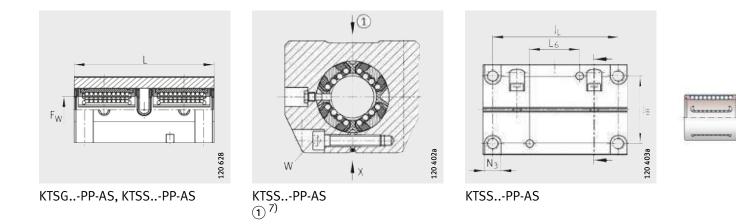
KTSG..-PP-AS, KTSS..-PP-AS (1) $^{7)}$

Dimension table · [Dimensions in mm										
Designation		Mass	Dimens	ions			Mountin	ng dimer	isions		
		m	F _W	В	L	Н	J _B	B ₁	A ₅	JL ³⁾	L ₆ ³⁾
		≈g					±0,15		±0,01	±0,15	
KTSG12-PP-AS	-	210	12	43	70	35	32	34	21,5	56	24
-	KTSS12-PP-AS	210	12	77	70	55	52	74	21,5	50	24
KTSG16-PP-AS	-	380	16	53	78	42	40	40	26,5	64	26
-	KTSS16-PP-AS	500	10		70	42	40	40	20,5	04	20
KTSG20-PP-AS	-	550	20	60	96	50	45	44	30	76	33
-	KTSS20-PP-AS	0.00	20	00	90	50	45	44	50	70	
KTSG25-PP-AS	-	1130	25	78	122	60	60	59,4	39	94	44
-	KTSS25-PP-AS	1150	25	78	122	00	00	59,4	72	94	44
KTSG30-PP-AS	-	1780	30	87	142	70	68	63	() F	10(54
-	KTSS30-PP-AS	1 / 80	50	0/	142	70	00	60	43,5	106	54

¹⁾ The basic load ratings are only valid for hardened (670 HV + 165 HV) and ground shaft raceways.

²⁾ Basic load rating in main load direction.

 $^{3)}$ Dimensions $\rm J_L, \, L_6$ and lubrication hole symmetrical to the bearing length L.

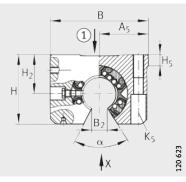

⁴⁾ Centring for dowel hole.

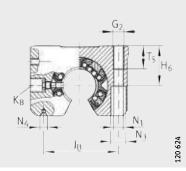
⁵⁾ For fixing screws ISO 4762-8.8.

If there is a possibility of settling, the screws should be secured against rotation.

⁶⁾ Lubrication nipple. Designs and dimensions, see page 30.

⁷⁾ (1) Main load direction


													Ball rows	Basic loa ratings ¹⁾	ad 2)
Н	2	H ₅	H ₄	T ₅	H ₆	G ₂	N ₁	N4 ⁴⁾	N ₃	K ₅ ⁵⁾	K ₈ ³⁾⁶⁾	Width across flats		dyn. C _{max}	stat. C _{0 max}
+(-(0,008 0,016											W	Quantity	Ν	Ν
1	8	5,4	26,6	11	16,5	M5	4,3	4	8	M4	NIP4MZ	- 2,5	8	1 460	2100
2	2	6,9	29,3	13	21	M6	5,3	4	10	M5	NIP4MZ	- 3	8	2 330	3100
2	5	7,4	34,1	18	24	M8	6,6	5	11	M6	NIP4MZ	- 4	8	3 500	4 600
3	0	8,3	41,5	22	29	M10	8,4	6	15	M8	NIP5MZ	- 5	8	6 400	8 600
3	5	9,3	46,2	22	34	M10	8,4	6	15	M8	NIP5MZ	- 5	8	9 600	12000



mmm

Heavy duty range

Linear ball bearing and housing units With segment cutout With or without slot Sealed Greased, with relubrication facility

Starting KGSN016-PP-AS, KGSNOS16-PP-AS (1) 8)

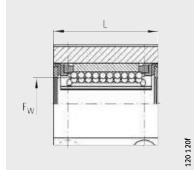
Starting KGSN016-PP-AS, KGSNOS16-PP-AS

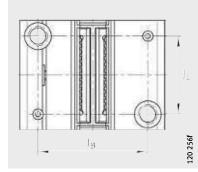
Dimension table · Dimensions in mm Designation Mass Dimensions Mounting dimensions												
Designation		Mass	Dimensi	ions			Mountir	ıg dimens	sions			
			-		1.	1			D 2)			
		m	F _W	В	L	Н	J _B	A ₅	B ₂ ³⁾	J _L ⁴⁾		
		≈g					±0,15	±0,01		±0,15		
KGSN012-PP-AS	-	80	12	43	32	28	32	21,5	7,6	23		
-	KGSNOS12-PP-AS	90	12	45	52	20	52	21,5	7,0	23		
KGSNO16-PP-AS	-	150	16	53	37	35	40	26,5	10,1	26		
-	KGSNOS16-PP-AS	150			57	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	40	20,5	10,1	20		
KGSNO20-PP-AS	-	200	20	60	45	42	45	30	10	32		
-	KGSNOS20-PP-AS	250	20	00	45	42	45	50	10	52		
KGSNO25-PP-AS	-	410	25	78	58	51	60	39	12,5	40		
-	KGSNOS25-PP-AS	520	25	70	50	51	00	<u>)</u> ,	12,5	40		
KGSNO30-PP-AS	-	600	30	87	68	60	68	43,5	14,3	45		
-	KGSNOS30-PP-AS	760	50	07	00	00	00	49,9	14,5	45		
KGSNO40-PP-AS	-	1 100	40	108	80	77	86	54	18,2	58		
-	KGSNOS40-PP-AS	1 400	40	100	00	//	00	54	10,2	50		
KGSNO50-PP-AS	-	2 870	50	132	100	88	108	66	22,7	50		
-	KGSNOS50-PP-AS	2 670	50	172	100	00	100	00	22,1			

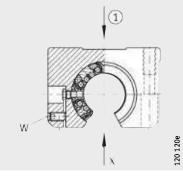
¹⁾ The basic load ratings are only valid for hardened (670 HV + 165 HV) and ground shaft raceways.

²⁾ Basic load rating in main load direction.

³⁾ Dimension B_2 on diameter F_W .


 $^{\rm 4)}\,$ Dimension J_L and lubrication hole symmetrical to the bearing length L.


⁵⁾ Centring hole DIN 332 type A.


⁶⁾ For fixing screws ISO 4762-8.8.If there is a possibility of settling, the screws should be secured against rotation.

⁷⁾ Lubrication nipple. Designs and dimensions, see page 30.

⁸⁾ (1) Main load direction

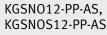
KGSNO..-PP-AS, KGSNOS..-PP-AS

KGSNOS..-PP-AS View X

Starting KGSNOS16-PP-AS $(1)^{8)}$

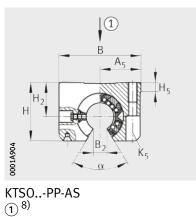
Ball

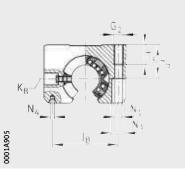
rows


Basic load ratings^{1) 2)}

00	********
8	
ter	
in	

H ₂	H ₅	Т ₅	H ₆	G ₂	N ₁	N ₄ ⁵⁾	N ₃	K ₅ ⁶⁾	K ₈ ⁴⁾⁷⁾	Width across flats	α		dyn. C _{max}	stat. C _{0 max}
+0,008 -0,016										W	0	Quantity	Ν	Ν
18	6,1	11	16,5	M5	4,3	1,6×3,35	8	M4	NIP4MZ	- 2,5	78	6	900	1 100
22	7,5	13	21	M6	5,3	1,6×3,35	10	M5	NIP4MZ	- 2,5	68	6	1 430	1 5 5 0
 25	8	18	24	M8	6,6	2×4,25	11	M6	NIP4MZ	- 2,5	55	6	2 200	2 310
30	8,8	22	29	M10	8,4	2,5×5,3	15	M8	NIP5MZ	- 3	57	6	3 950	4 300
35	9,7	22	34	M10	8,4	2,5×5,3	15	M8	NIP5MZ	- 3	57	6	5 900	6 000
45	12,4	26	44	M12	10,5	3,15×6,7	18	M10	NIP5MZ	- 4	56	6	10 200	9 600
50	11,1	35	49	M16	13,5	4×8,5	20	M12	NIP5MZ	- 5	54	6	15 100	13900





Schaeffler Technologies

Heavy duty range

Linear ball bearing and housing units Tandem arrangement With segment cutout With or without slot Sealed Greased, with relubrication facility

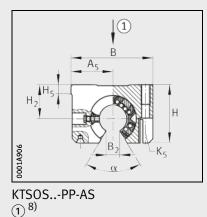
KTSO..-PP-AS

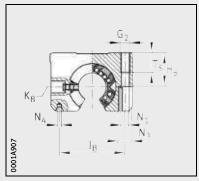
Dimension table · Di	mensions in mm									
Designation		Mass	Dimensi	ons			Mountir	ıg dimens	sions	
		m	F _W	В	L	Н	J _B	A ₅	B ₂ ³⁾	J _L ⁴⁾
		≈g					±0,15	±0,01		±0,15
KTSO12-PP-AS	-	190	12	43	70	28	32	21,5	7,6	56
_	KTSOS12-PP-AS	190	12	4)	70	20	52	21,5	7,0	50
KTSO16-PP-AS	-	320	16	53	78	35	40	26,5	10,1	64
-	KTSOS16-PP-AS	520	10))	70	22	40	20,5	10,1	04
KTSO20-PP-AS	-	520	20	60	96	42	45	30	10	76
-	KTSOS20-PP-AS	520	20	00	90	42	45	50	10	70
KTSO25-PP-AS	-	1 060	25	78	122	51	60	39	12,5	94
-	KTSOS25-PP-AS	1000	25	70	122	71	00	23	12,5	24
KTSO30-PP-AS	-	1 5 5 0	30	87	142	60	68	43,5	14,3	106
-	KTSOS30-PP-AS	1 3 50	50	07	142	00	00	40,0	14,5	100

 $^{(1)}$ The basic load ratings are only valid for hardened (670 HV + 165 HV) and ground shaft raceways.

²⁾ Basic load rating in main load direction.

³⁾ Dimension B_2 on diameter F_W .

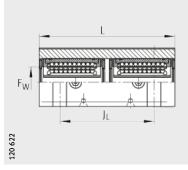

 $^{\rm 4)}$ Dimensions $\rm J_L,\, L_6$ and lubrication hole symmetrical to the bearing length L.

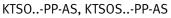

⁵⁾ Centring hole DIN 332 type A.

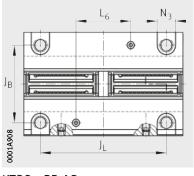
⁶⁾ For fixing screws ISO 4762-8.8.If there is a possibility of settling, the screws should be secured against rotation.

⁷⁾ Lubrication nipple. Designs and dimensions, see page 30.

⁸⁾ (1) Main load direction

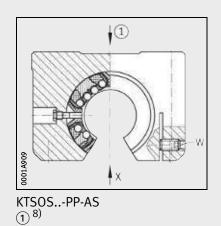





KTSOS..-PP-AS

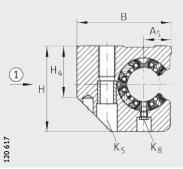
WF 1 84

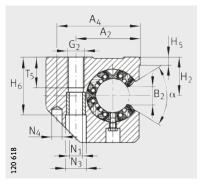
Schaeffler Technologies



KTSO..-PP-AS View X

													Ball rows	Basic lo ratings ¹	
L ₆ ⁴⁾	H ₂	H ₅	T ₅	H ₆	G ₂	N ₁	N ₄ ⁵⁾	N ₃	K ₅ ⁶⁾	K ₈ ⁴⁾⁷⁾	Width across flats	α		dyn. C _{max}	stat. C _{0 max}
	+0,008 -0,016										W	o	Quantity	N	N
24	18	6,1	11	16,5	M5	4,3	1,6×3,35	8	M4	NIP4MZ	- 2,5	66	6	1 460	2 1 0 0
26	22	7,5	13	21	M6	5,3	1,6×3,35	10	M5	NIP4MZ	- 2,5	68	6	2 330	3100
33	25	8	18	24	M8	6,6	2×4,25	11	M6	NIP4MZ	- 2,5	55	6	3 500	4 600
44	30	8,8	22	29	M10	8,4	2,5×5,3	15	M8	NIP5MZ	- 3	57	6	6 400	8 600
54	35	9,7	22	34	M10	8,4	2,5×5,3	15	M8	NIP5MZ	- 3	57	6	9 600	12000





Heavy duty range

Linear ball bearing and housing units Lateral segment cutout With or without slot Sealed Greased, with relubrication facility

KGSC..-PP-AS, KGSCS..-PP-AS (1) 8)

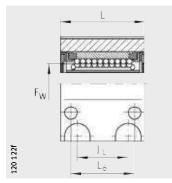
KGSC..-PP-AS, KGSCS..-PP-AS

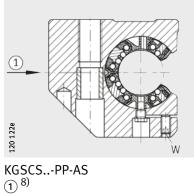
Dimension table \cdot	Dimensions in mm											
Designation		Mass	Dimen	sions			Mounti	ng dime	nsions			
		m	F _W	В	L	Н	A ₂	A ₄	A ₅	B ₂ ³⁾	J _L ⁴⁾	L ₆ ⁴⁾
		≈g					±0,15		±0,01		±0,15	
KGSC20-PP-AS	-	350	20	60	47	60	39	51	17	10	30	36
-	KGSCS20-PP-AS	550	20	00	47	00	59	71	17	10	50	00
KGSC25-PP-AS	-	680	25	75	58	72	49	64	21	12,5	36	45
-	KGSCS25-PP-AS	080	25	75	50	12	49	04	21	12,5	50	45
KGSC30-PP-AS	-	1 000	30	86	68	82	59	76	25	14,3	42	52
-	KGSCS30-PP-AS	1000	50	00	00	02	59	70	25	14,5	42	52
KGSC40-PP-AS	-	1 800	40	110	80	100	75	97	32	18,2	48	60
-	KGSCS40-PP-AS	1 800	40	110	80	100	75	97	52	10,2	40	00
KGSC50-PP-AS	-	2 900	50	127	100	115	88	109	38	22,7	62	80
-	KGSCS50-PP-AS	2 900	50	127	100	112	00	109	20	22,7	02	00

 $^{(1)}$ The basic load ratings are only valid for hardened (670 HV + 165 HV) and ground shaft raceways.

²⁾ Basic load rating in main load direction.

³⁾ Dimension B_2 on diameter F_W .


⁴⁾ Dimensions J_L , L_6 and lubrication hole symmetrical to the bearing length L.


⁵⁾ Centring for dowel hole.

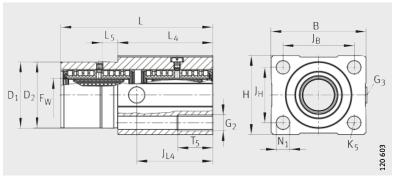
⁶⁾ For fixing screws ISO 4762-8.8.If there is a possibility of settling, the screws should be secured against rotation.

⁷⁾ Lubrication nipple. Designs and dimensions, see page 30.

⁸⁾ (1) Main load direction

KGSC..-PP-AS, KGSCS..-PP-AS

													Ball rows	Basic loa ratings ¹⁾	
H ₂	H ₅	H ₄	T ₅	H ₆	G ₂	N ₁	N4 ⁵⁾	N ₃	К ₅ ⁶⁾	K ₈ ⁴⁾⁷⁾	Width across flats W	α		dyn. C _{max}	stat. C _{0 max}
+0,008 -0,016											vv	0	Quantity	N	N
30	8,3	37,5	18	42,6	M10	8,4	6	15	M8	NIP4MZ	- 2,5	55	6	2 200	2 310
35	8,2	45	22	50,6	M12	10,5	8	18	M10	NIP5MZ	- 3	57	6	3 950	4 300
40	9	52	29	55,6	M16	13,5	10	20	M12	NIP5MZ	- 3	57	6	5 900	6 0 0 0
45	9,5	60	36	67,6	M20	15,5	12	24	M14	NIP5MZ	- 4	56	6	10 200	9600
50	8,6	70	36	78,8	M20	17,5	12	26	M16	NIP6MZ	- 5	54	6	15 100	13900



.....

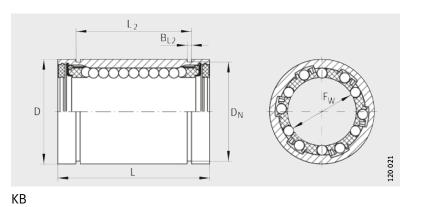
Heavy duty range

Linear ball bearing and housing units Centring collar Tandem arrangement Sealed Greased, with relubrication facility

Dimension table · Dimension	Dimension table · Dimensions in mm												
Designation	Mass	Dimensions	i			Mounting d	imensions						
	m	F _W	В	L	Н	J _B	L ₄	L ₅					
	≈g					±0,15							
KTFS12-PP-AS	180	12	42	70	34	32	46	10					
KTFS16-PP-AS	260	16	50	78	40	38	50	10					
KTFS20-PP-AS	550	20	60	96	50	45	60	10					
KTFS25-PP-AS	700	25	74	122	60	56	73	10					
KTFS30-PP-AS	1 100	30	84	142	70	64	82	10					

¹⁾ The basic load ratings are only valid for hardened (670 HV + 165 HV) and ground shaft raceways.

²⁾ Recommended locating bore for $D_1 = H7$.



									Ball	Basic load	d ratings ¹⁾
J _{L4}	D ₁ ²⁾ g7	D ₂ -0,1 -0,3	J _H ±0,15	T ₅	G ₂	N ₁	К ₅	G ₃	rows Quantity	dyn. C _{min} N	stat. C _{0 min} N
35	30	30	24	13	M6	5,3	M5	M8×1	8	1 0 2 0	1 200
39	35	35	28	18	M8	6,6	M6	M8×1	8	1 790	1 900
48	42	42	35	22	M10	8,4	M8	M8×1	8	3 100	3 200
61	52	52	42	26	M12	10,5	M10	M8×1	8	4 400	4 850
71	61	61	50	35	M16	13,5	M12	M8×1	8	7 550	7 900

Machined range

Linear ball bearings Closed, slotted or with segment cutout Open or sealed Not greased, greased, with relubrication facility

Dimension t	Dimension table · Dimensions in mm Designation Mass Dimensions Mounting dimensions												
Designation			Mass	Dimens	ions			Mountir	ng dimens	sions			
3)	4)	5)	m	Fw		D ⁶⁾	L	B ₂ ⁷⁾	L ₂	B _{L2} ⁸⁾			
						_							
			≈g		Tolerances ⁶⁾	h5	h12		H13				
KB12	KB12-PP	KB12-PP-AS	40					_					
KBS12	KBS12-PP	KBS12-PP-AS	40	12	+0,008 0	22	32		22,6	1,3			
KBO12	KBO12-PP	KBO12-PP-AS	30					7,7					
KB16	KB16-PP	KB16-PP-AS	50										
KBS16	KBS16-PP	KBS16-PP-AS	50	16	+0,009 -0,001	26	36		24,6	1,3			
KBO16	KBO16-PP	KBO16-PP-AS	40					10,1					
KB20	KB20-PP	KB20-PP-AS	- 90										
KBS20	KBS20-PP	KBS20-PP-AS	90	20	+0,009 -0,001	32	45		31,2	1,6			
KBO20	KBO20-PP	KBO20-PP-AS	70					10					
KB25	KB25-PP	KB25-PP-AS	190										
KBS25	KBS25-PP	KBS25-PP-AS	190	25	+0,011 -0,001	40	58	_	43,7	1,85			
KBO25	KBO25-PP	KBO25-PP-AS	150					12,5					
KB30	KB30-PP	KB30-PP-AS	300										
KBS30	KBS30-PP	KBS30-PP-AS	500	30	+0,011 -0,001	47	68		51,7	1,85			
KBO30	KBO30-PP	KBO30-PP-AS	240					13,6					
KB40	KB40-PP	KB40-PP-AS	600										
KBS40	KBS40-PP	KBS40-PP-AS	800	40	+0,013 -0,002	62	80	_	60,3	2,15			
KBO40	KBO40-PP	KBO40-PP-AS	520					18,2					
KB50	KB50-PP	KB50-PP-AS	1.000										
KBS50	KBS50-PP	KBS50-PP-AS	1 000	50	+0,013 -0,002	75	100	-	77,3	2,65			
KBO50	KBO50-PP	KBO50-PP-AS	850]		, ,		22,7]				

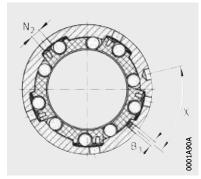
¹⁾ The basic load ratings are only valid for hardened (670 HV + 165 HV) and ground shaft raceways.

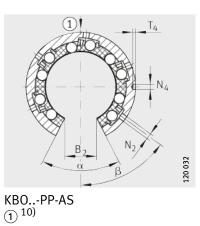
²⁾ Basic load rating in main load direction.

³⁾ With preservative.

⁴⁾ With initial greasing, sealed on both sides.

⁵⁾ With initial greasing, sealed on both sides, with relubrication facility.


⁶⁾ The tolerances are only valid for KB.


⁷⁾ Dimension B_2 on diameter F_W .

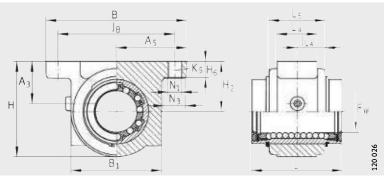
⁸⁾ Slot dimensions suitable for retaining rings to DIN 471.

⁹⁾ Hole position symmetrical to bearing length L.

 $^{\rm 10)}$ () Main load direction

KBS..-PP-AS

									Ball	Basic loa	d ratings ¹⁾		
	B ₃	D _N ⁸⁾	T ₄	N ₄ ⁹⁾	N ₂	α	β	Х	rows	dyn. C _{min}	stat. C _{0 min}	dyn. C _{max}	stat. C _{0 max}
						0	0	0	Quantity	Ν	Ν	Ν	Ν
	_		_	_		_	_	-	5	540	385	640	570
_	1	21			1,5			55	5	540	505		
	-		1,2	2,2		78	64	-	4	-	-	600 ²⁾	445 ²⁾
	-		_	_		_	_	-	5	710	530	840	780
_	1	24,9			2			54	5	,10	550		
	-		1,2	2,2		78	64	-	4	-	-	800 ²⁾	620 ²⁾
-	-	30,3	_	_		_	_	_	6	1 570	1 2 3 0	1 660	1 570
_	1				2			62,5		1 57 0	1 250		
	_		1,2	2,2		60	52	-	5	-	-	1 600 ²⁾	1 280 ²⁾
	-		_	_		_	_	-	6	2 800	2 2 2 2 0	2 950	2 850
_	1	37,5			2,5			62		2000	2 2 2 0		
	_		1,5	3		60	53	-	5	-	-	2 850 ²⁾	2 300 ²⁾
	_		_	_		_	_	-	6	3 600	2850	3 800	3 600
_	1	44,5			2,5			64		5000	2050		
	-		1,5	3		54	55	-	5	-	-	3 700 ²⁾	3 000 ²⁾
_	_		_	_		_	_	-	6	6 0 0 0	4 400	6 400	5 600
_	1	59			3			64			1400		
	-		1,5	3		54	54	-	5	-	-	6 100 ²⁾	4 600 ²⁾
_	_		_	_		_	_	-	6	8 7 0 0	6 300	9 200	8 000
_	1	72			4			64	Ŭ	0700	0 900		
	_		1,5	3		54	54	-	5	-	-	8 900 ²⁾	6 600 ²⁾



Machined range

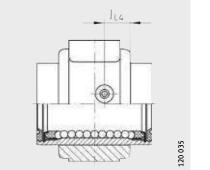
Linear ball bearing and housing units Closed, slotted or with segment cutout Sealed Greased, with relubrication facility

KGB..-PP-AS

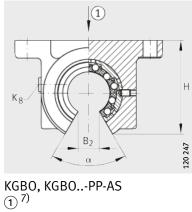
Dimension tabl	e ∙ Dimensions in	mm										
Designation			Mass	Dim	ensions				Mounting	limens	ions	
			m	Fw		В	L	н	J _B	B ₁	A ₅	B ₂ ⁴⁾
											-	
				<u> </u>	Toler-							
			≈g		ances ⁶⁾		h12					
KGB12-PP-AS	-	-	100					35,8				_
-	KGBS12-PP-AS	-	100	12	+0,008 0	52	32	,0	42 ±0,15	31,6	26±0,02	
-	-	KGB012-PP-AS	90					32				7,7
KGB16-PP-AS	-	-	140					37,5				_
-	KGBS16-PP-AS	-	140	16	+0,009 -0,001	56	36	57,5	46 ±0,15	35	28±0,02	
-	-	KGBO16-PP-AS	120					33,5				10,1
KGB20-PP-AS	-	-	- 300					47,5				_
-	KGBS20-PP-AS	-	500	20	+0,009 -0,001	70	45	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	58 ±0,15	45	35±0,02	
-	-	KGBO20-PP-AS	250					45				10
KGB25-PP-AS	-	-	- 580					57,5				_
-	KGBS25-PP-AS	-	500	25	+0,011 -0,001	80	58	57,5	68 ±0,15	55	40±0,02	
-	-	KGBO25-PP-AS	490					54,5				12,5
KGB30-PP-AS	-	-	900					66,5				_
-	KGBS30-PP-AS	-	,	30	+0,011 -0,001	88	68	00,5	76 ±0,2	63	44±0,02	
-	-	KGBO30-PP-AS	780					63,5				13,6
KGB40-PP-AS	-	-	1 4 3 0					83,5				_
-	KGBS40-PP-AS	-	1 450	40	+0,013 -0,002	108	80	05,5	94 ±0,2	77	54±0,02	
-	-	KGBO40-PP-AS	1 280					79,5				18,2
KGB50-PP-AS	-	-	2 780		0.012			98				_
-	KGBS50-PP-AS	-	_,	50	+0,013 -0,002	135	100		116 \pm 0,2	96	67,5±0,02	
-	-	KGBO50-PP-AS	2 460					93				22,7

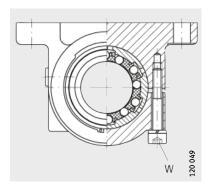
¹⁾ Designs and dimensions, see page 31.

 $^{2)}$ The basic load ratings are only valid for hardened (670 HV + 165 HV) and ground shaft raceways.


³⁾ Basic load rating in main load direction.

⁴⁾ Dimension B_2 on diameter F_W .


⁵⁾ For fixing screws ISO 4762-8.8.
 If there is a possibility of settling, the screws should be secured against rotation.

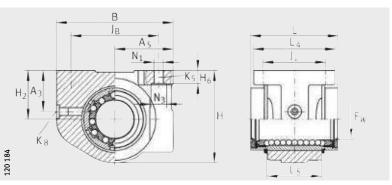

⁶⁾ The tolerances are valid for KGB..-PP-AS.

 $^{7)}$ ① Main load direction

KGBO..-PP-AS

KGBS..-PP-AS

.....


.....

G

											Lubrication nipple ¹⁾	Ball rows	Basic load	d ratings ²⁾
L ₅	L ₄	J _{L4}	H ₂	A ₃	H ₆	N ₁	N ₃	K ₅ ⁵⁾	α	Width across flats W	K ₈		dyn. C	stat. C ₀
			±0,015						0			Quantity	Ν	Ν
20	12	10	20	15	6	5,5	10	M5	-	- 2	NIPA1	5	540	385
		6,5	-						78	-	-	4	600 ³⁾	445 ³⁾
22	15	11	20	15	6	5,5	10	M5	_	- 2	NIPA1	5	710	530
		6,5							78	-		4	800 ³⁾	620 ³⁾
28	20	14	25	21	8	6,6	11	M6	_	- 3	NIPA1	6	1 570	1 2 3 0
		9,5							60	-		5	1 600 ³⁾	1 280 ³⁾
40	28	20	30	23	10	6,6	11	M6	_	- 3	NIPA1	6	2 800	2 2 2 2 0
		15							60	-		5	2 850 ³⁾	2 330 ³⁾
48	32	24	35	25	10	6,6	11	M6	-	- 4	NIPA2	6	3 600	2850
		19							54	-		5	3 700 ³⁾	3 000 ³⁾
56	40	28	45	30	12	9	15	M8	-	- 4	NIPA2	6	6 000	4 400
		23	1						54	-	1	5	6 100 ³⁾	4 600 ³⁾
72	52	36	50	34	14	11	18	M10	_	- 5	NIPA2	6	8 700	6 300
		28	1						54	-	1	5	8 900 ³⁾	6 600 ³⁾

Machined range

Linear ball bearing and housing units Closed, slotted or with segment cutout Sealed Greased, with relubrication facility

KGBA..-PP-AS

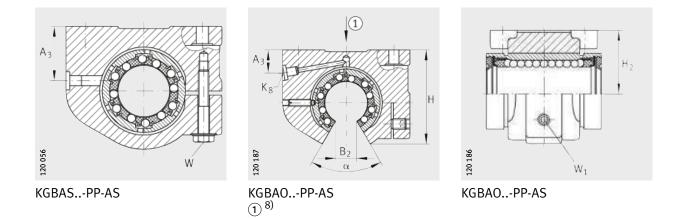
Dimension table · Dimensions in mm												
Designation			Mass	Dim	nensions			Moun	iting dimen	isions		
				-								
			m	F_W		В	L	Н	J _B	А ₅	B ₂ ⁴⁾	L ₄
			≈g		Toler- ances ⁷⁾		h12					
KGBA12-PP-AS	-	-						24				
-	KGBAS12-PP-AS	-	80	12	+0,008	42	32	34	32±0,15	21±0,01	-	32
-	-	KGBAO12-PP-AS	70					30,5			7,7	
KGBA16-PP-AS	-	-	120					41				
-	KGBAS16-PP-AS	-	120	16	+0,009 -0,001	50	36	41	40±0,15	25±0,01		35
-	-	KGBAO16-PP-AS	100					37			10,1	
KGBA20-PP-AS	-	-	200					47,5			_	
-	KGBAS20-PP-AS	-	200	20	+0,009 -0,001	60	45	47,5	45 ±0,15	30±0,01		42
-	-	KGBAO20-PP-AS	170					44,5			10	
KGBA25-PP-AS	-	-	410					60			_	
-	KGBAS25-PP-AS	-	410	25	+0,011 -0,001	74	58	00	60±0,2	37±0,01		54
-	-	KGBAO25-PP-AS	350					56			12,5	
KGBA30-PP-AS	-	-	610		0.014			67			_	
	KGBAS30-PP-AS	-		30	+0,011 -0,001	84	68		68±0,2	42±0,01		60
_	-	KGBAO30-PP-AS	530					63,5			13,6	
KGBA40-PP-AS	-	-	1 200		.0.012			87			_	
-	KGBAS40-PP-AS	-		40	+0,013 -0,002	108	80		86±0,2	54±0,015		78
-	-	KGBAO40-PP-AS	1070					82,5			18,2	
KGBA50-PP-AS	-	-	1 880		+0.013			98			_	
-	KGBAS50-PP-AS	-		50	+0,013 -0,002	130	100		108±0,2	65±0,015	<u> </u>	70
-	-	KGBAO50-PP-AS	1650					93			22,7	

¹⁾ Designs and dimensions, see page 31.

 $^{2)}$ The basic load ratings are only valid for hardened (670 HV + 165 HV) and ground shaft raceways.

³⁾ Basic load rating in main load direction.

⁴⁾ Dimension B_2 on diameter F_W .


⁵⁾ For fixing screws ISO 4762-8.8.

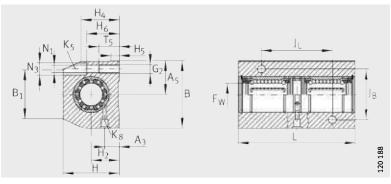
If there is a possibility of settling, the screws should be secured against rotation.

⁶⁾ Note maximum tightening torques.

⁷⁾ The tolerances are valid for KGBA..-PP-AS.

⁸⁾ (1) Main load direction

-	
ľ	لعسسسه
1	



												Lubrication	Ball	Basic load	d ratings?
												nipple ¹⁾	rows	Basic load	i raungs-
J _L	L_5	H ₂	A ₃	H ₆	N_1	N_3	K ₅ ⁵⁾	α	Width	across	s flats	K ₈		dyn.	stat.
									W	W1 ⁶⁾	r	+		С	C ₀
				-0,5				o			max. Nm		Quantity	N	N
			15					_	-		_		5	540	385
23±0,15	20	18±0,01		4,8	4,7	8	M4		7	-		NIPA1			
			7,8					78	-	2	1		4	600 ³⁾	445 ³⁾
26±0,15	22	22±0,01	15	5,4	4,7	8	M4	-	- 7	-	-	NIPA1	5	710	530
			10					78	-	2,5	1,5		4	800 ³⁾	620 ³⁾
			21						-		_		6	1 570	1 2 3 0
32±0,15	28	25±0,01	21	6,7	4,7	8	M4	_	7		_	NIPA1	0		
			11					60	-	2,5	1,5		5	1 600 ³⁾	1 280 ³⁾
40±0,2	40	30±0,01	23	7,8	5,7	10	M5	-	- 8	-	-	NIPA1	6	2 800	2 2 2 0
			13		ŕ			60	_	3	3		5	2 850 ³⁾	2 330 ³⁾
			25						-				(
45±0,2	48	35±0,01	25	8,7	6,8	11	M6	_	10	-	-	NIPA2	6	3 600	2850
			14					54	-	3	4		5	3 700 ³⁾	3 000 ³⁾
			30					_	-		_		6	6 000	4 400
58±0,2	56	45±0,01		11	9,2	15	M8		13			NIPA2			
			18					54	-	4	5		5	6 100 ³⁾	4 600 3)
50.5	70	50	34	125		4.5		-	-		-		6	8 700	6 300
50±0,2	72	50±0,015	10	12,5	9,2	15	M8	F 4	13	1	7	NIPA2		0 000 ³⁾	6 600 ³⁾
			19				1	54	-	4	7		5	8 900 ³⁾	0,000

Machined range

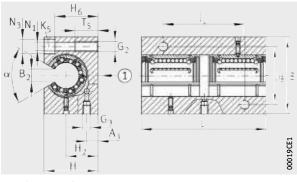
Linear ball bearing and housing units Tandem arrangement Closed or with segment cutout Sealed Greased, with relubrication facility

KTB..-PP-AS

Dimension table · Dimensions in mm													
Designation		Mass	Dime	nsions				Mountin	ng dime	ension	5		
		m	FW		В	L	Н	J _B	A_5	B ₁	B ₂ ³⁾	J _L ⁴⁾	H ₂
				I	ł								
		≈g		Toler- ances ⁶⁾				±0,15				±0,15	±0,015
KTB12-PP-AS	-	310	12	+0,008	43	76	35	30	21,5	34	-	40	18
-	KTBO12-PP-AS	260	12	0	42	70	30	50	-	-	7,7	40	18
KTB16-PP-AS	_	460	16	+0,009	53	84	42	36	26,5	40	-	45	22
-	KTBO16-PP-AS	360	10	-0,001	50	04	35	50	-	-	10,1	45	22
KTB20-PP-AS	-	800	20	+0,009 -0,001	60	104	50	45	30	44	-	55	25
-	KTBO20-PP-AS	620	20	-0,001	00	104	42	47	-	-	10		25
KTB25-PP-AS	-	1 490	25	+0,011	78	130	60	54	39	60	-	70	30
-	KTBO25-PP-AS	1 1 8 0	25	-0,001	74	150	51	74	-	-	12,5	,,,	50
KTB30-PP-AS	-	2 300	30	+0,011 -0,001	87	152	70	62	43,5	63	-	85	35
-	KTBO30-PP-AS	1840	50	-0,001	84	172	60	02	-	-	13,6	05	
KTB40-PP-AS	-	3 700	40	+0,013	108	176	90	80	54	76	-	100	45
-	KTBO40-PP-AS	3 000	-10	-0,002	100	170	77	00	-	-	18,2	100	ر ب
KTB50-PP-AS	-	6 600	50	+0,013	132	224	105	100	66	90	-	125	50
-	KTBO50-PP-AS	5 100		-0,002	130	227	88	100	-	-	22,7	125	50

¹⁾ The basic load ratings are only valid for hardened (670 HV + 165 HV) and ground shaft raceways and where the two linear ball bearings are subjected to equal loading.

 $^{\rm 2)}$ Basic load rating in main load direction.


³⁾ Dimension B_2 on diameter F_W .

 $^{\rm 4)}$ Dimension $J_{\rm L}$ and lubrication hole symmetrical to the bearing length L.

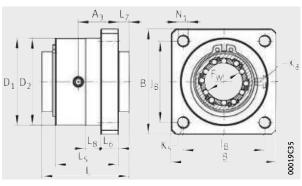
⁵⁾ Lubrication nipple. Designs and dimensions, see page 31.

⁶⁾ The tolerances are valid for KTB..-PP-AS.

⁷⁾ (1) Main load direction

											Fixing scre	WS	Basic load	ratings ¹⁾
H ₄	A ₃	H ₅	Т ₅	H ₆	N ₁	N ₃	G ₂	G ₃	K ₈ ⁵⁾	α	К ₅	5		stat. C ₀
										o	ISO 4762	DIN 6912	N	N
25,5	10	5,4	13	28	5,3	10	M6	_	NIPA1	-	M5	-	880	770
-	6	-	15	25	5,5	10	MO	M6	-	78	-	M5	980 ²⁾	890 ²⁾
20	12	6,9	13	35	5,3	10	M6	-	NIPA1	-	M5	-	1 1 5 0	1 060
-	8	-	115	29,5	5,5	10	MO	M6	-	78	-	M5	1 290 ²⁾	1 240 ²⁾
33	13	7,4	18	37	<i>(</i>),	11	M8	-	NIPA2	-	M6	-	2 5 5 0	2 4 5 0
-	9	-	10	35,5	6,4	11	1110	M6	-	60	-	M6	2 600 ²⁾	2 550 ²⁾
40	15	8,3	22	49	8,4	15	M10	-	NIPA2	-	M8	-	4 5 5 0	4 4 5 0
-	9	-	22	43	0,4	12	MIO	M8×1	-	60	-	M8	4 650 ²⁾	4 650 ²⁾
44,5	16	9,3	26	52	10 F	18	M12	-	NIPA2	-	M10	-	5 900	5 700
-	11	-	20	50,5	10,5	10	1112	M8×1	-	54	-	M10	6 000 ²⁾	6 000 ²⁾
56	20	12,4	24	64	10	20	M1C	-	NIPA2	-	M12	-	8 800	9 700
-	14	-	34	66	13	20	M16	M8×1	-	54	-	M12	9 200 ²⁾	9 900 ²⁾
60	20	11,1	34	70	13	20	M16	-	NIPA2	-	M12	-	12600	14100
-	14	-	אכן	77	212	20	MID	M8×1	-	54	-	M12	13 200 ²⁾	14 500 ²⁾

.....


مستعد

Machined range

Linear ball bearing and housing unit With flange Sealed Greased, with relubrication facility

KFB..-B-PP-AS

Dimension table · Dimensions in mm											
Designation	Mass	Dimens	sions			Mounting	Mounting dimensions				
	m	F _W		В	L	L ₅	L ₆	L ₇	A ₃		
	≈g		Tolerances	-							
KFB12-B-PP-AS	80	12	+0,008	40	32	22	6	4,2	11,5		
KFB16-B-PP-AS	120	16	+0,009 -0,001	50	36	24	8	5,2	12,5		
KFB20-B-PP-AS	220	20	+0,009 -0,001	60	45	30	10	6,7	15,8		
KFB25-B-PP-AS	430	25	+0,011 -0,001	70	58	42	12	7	22		
KFB30-B-PP-AS	640	30	+0,011 -0,001	80	68	50	14	8	26		
KFB40-B-PP-AS	1 280	40	+0,013 -0,002	100	80	59	16	9,2	30,3		
KFB50-B-PP-AS	2 1 6 0	50	+0,013 -0,002	130	100	75	18	11,2	38,8		

¹⁾ The basic load ratings are only valid for hardened (670 HV + 165 HV) and ground shaft raceways.

²⁾ For fixing screws ISO 4762-8.8.

If there is a possibility of settling, the screws should be secured against rotation.

³⁾ Lubrication nipple. Designs and dimensions, see page 31.



		Ball rows	Basic load ratings ¹⁾						
N ₁	K ₅ ²⁾	D ₁ +0,2	D ₂ g7	J _B	L ₈	K ₈ ³⁾		dyn. C	stat. C ₀
							Quantity	Ν	Ν
5,5	M5	31,5	32	30	10	NIPD3	5	540	385
5,5	M5	37,5	38	35	10	NIPD3	5	710	530
6,6	M6	45,5	46	42	10	NIPD3	6	1 570	1 230
6,6	M6	57,5	58	54	10	NIPA1	6	2 800	2 2 2 0
9	M8	65,5	66	60	10	NIPA1	6	3 600	2850
11	M10	89,5	90	78	10	NIPA1	6	6 000	4 400
11	M10	97,5	98	98	10	NIPA2	6	8 700	6 300

Plain bearing range

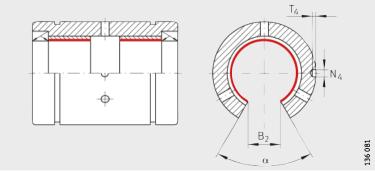
Linear plain bearings

Closed or with segment cutout Sealed Greased, with relubrication facility

PAB..-PP-AS, PABO..-PP-AS

Dimension table · Dimensions in mm											
Designation		Mass	Dimensions	;		Mounting d	imensions				
		m	F _W	D	L	L ₂ ³⁾	B _{L2} ⁴⁾				
		≈g		h7 ²⁾	h12	H13	H13				
PAB12-PP-AS	-	26	12	22	32	22,6	1 2				
-	PABO12-PP-AS	21	12	22	52	22,0	1,3				
PAB16-PP-AS	-	34	16	26	36	24,6	1.2				
-	PABO16-PP-AS	28	10	20	00	24,0	1,3				
PAB20-PP-AS	-	68	20	32	45	31,2	1.6				
-	PABO20-PP-AS	58	20	52	45	51,2	1,6				
PAB25-PP-AS	-	132	25	40	58	43,7	1,85				
-	PABO25-PP-AS	113	25	40	20	43,7	1,00				
PAB30-PP-AS	-	169	30	47	68	F1 7	1.05				
-	PABO30-PP-AS	143	50	47	00	51,7	1,85				
PAB40-PP-AS	-	426	40	62	80	60.2	2.15				
-	PABO40-PP-AS	362	40	02	00	60,3	2,15				
PAB50-PP-AS	-	773	50	75	100	77,3	2.45				
-	PABO50-PP-AS	657	50	د /	100	11,5	2,65				

The basic static load ratings are not valid if the bearings above are fitted


 as shown on the following pages – in housings.

²⁾ The tolerance is only valid for PAB..-PP-AS.

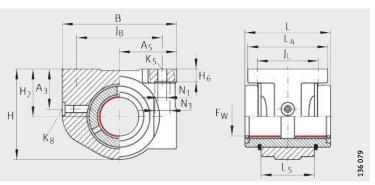
³⁾ Holes symmetrical to bearing length L.

⁴⁾ Slot dimensions suitable for retaining rings to DIN 471.

⁵⁾ Dimension B_2 on diameter F_W .

PABO..PP-AS Segment cutout and fixing hole

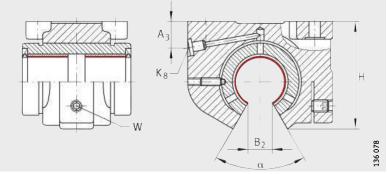
						Basic load ratings ¹⁾
D _N	B2 ⁵⁾	T ₄	N ₄	NL	α	stat.
				H13	o	C _O N
21	-	-	-	2,5	-	60 000
21	7,6	1,2	2,2	2,5	78	00000
24,9	-	-	_	2,5	-	96 000
24,9	10,1	1,2	2,2	2,5	78	90000
30,3	-	-	-	2,5	-	150 000
50,5	10	1,2	2,2	2,5	60	150 000
37,5	-	-	_	2,5	-	250 000
57,5	12,5	1,5	3	2,5	60	230 000
44,5	-	-	_	3	-	375 000
44,5	13,6	1,5	3	C	54	373 000
59	-	-	-	3	-	600 000
59	18,2	1,5	3	ر	54	000 000
72	-	-	_	4	-	1 000 000
12	22,7	1,5	3	4	54	1000000



Plain bearing range

Linear plain bearing units Closed or with segment cutout Sealed Greased, with relubrication facility

PAGBA..-PP-AS, PAGBA..-PP-AS


Dimension table · Dimensions in mm												
Designation		Mass	Dimens	sions		Mounti	ng dimensio	15				
		m	F _W	В	L	Н	J _B	A ₅	B ₂ ²⁾	L ₄		
		≈g			h12							
PAGBA12-PP-AS	-	70	12	42	32	34	32±0,15	21±0,01	-	32		
-	PAGBAO12-PP-AS	60	12	42	52	30,5	52±0,15	21	7,6	52		
PAGBA16-PP-AS	-	110	16	50	36	41	40±0,15	25±0,01	-	35		
-	PAGBAO16-PP-AS	90	10	50	50	36,8	40±0,15	25	10,1			
PAGBA20-PP-AS	-	180	20	60	45	47,5	45 ±0,15	30±0,01	-	42		
-	PAGBAO20-PP-AS	160	20	60	45	44,5	45±0,15	30	10	42		
PAGBA25-PP-AS	-	350	25	74	58	60	60±0,2	37±0,01	-	54		
-	PAGBA025-PP-AS	310	25	74	50	56	00±0,2	37	12,5	54		
PAGBA30-PP-AS	-	480	30	84	68	67	68±0,2	42±0,01	-	60		
_	PAGBAO30-PP-AS	430	50	04	00	63,5	00±0,2	42	13,6	00		
PAGBA40-PP-AS	-	1 0 7 0	40	108	80	87	86±0,2	54±0,015	-	78		
-	PAGBAO40-PP-AS	910	-10	100	00	82,4	00 ±0,2	54	18,2	/0		
PAGBA50-PP-AS	-	1 650	50	130	100	98	108±0,2	65±0,015	-	70		
-	PAGBAO50-PP-AS	1 460	<u> </u>	150	100	92,8	100_0,2	65	22,7	/ 0		
· · · · · · · · · · · · · · · · · · ·												

¹⁾ Designs and dimensions, see page 31.

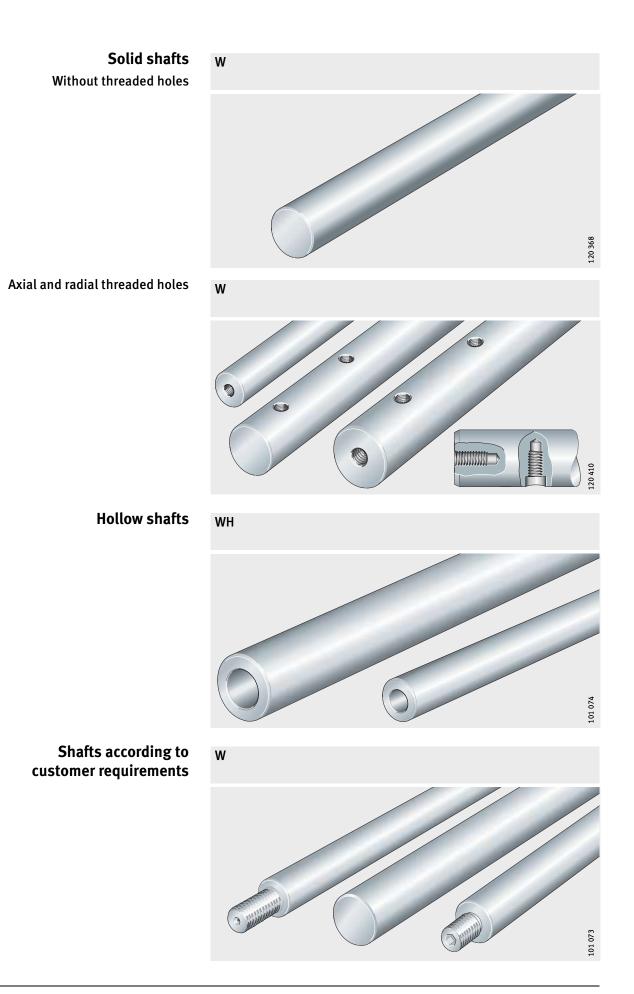
²⁾ Dimension B_2 on diameter F_W .

³⁾ For fixing screws ISO 4762-8.8.
 If there is a possibility of settling, the screws should be secured against rotation.

⁴⁾ Note maximum tightening torques.

PAGBAO..-PP-AS Segment cutout

											Lubrication nipple ¹⁾	
JL	L ₅	H ₂	A ₃	H ₆	N ₁ ³⁾	N ₃ ³⁾	K ₅	Width across flats W ⁴⁾		α	K ₈	
				-0,5					max. Nm	0		
23±0,15	20	18±0,01	15	4,8	4,7	0	8 M4	_	-	-	NIPA1	
25±0,15	20	18	7,8	4,0	4,7	0		2	1	78		
26±0,15	22	22±0,01	15	- 5,4	4,7	8	M4	-	-	-	NIPA1	
	22	22	10					2,5	1,5	78		
	20	25±0,01	21	67	4.7	0	NA 6	-	-	-	NIPA1	
32±0,15	28	25	11	6,7	4,7	8	M4	2,5	1,5	60		
(0) 0 2	40	30±0,01	23	7.0	F 7	10	M5	-	-	-	NIPA1	
40±0,2	40	30	13	7,8	5,7	10	1015	3	3	60		
45±0,2	0,2 48	35±0,01	25	07 (0	(0 11	11 M6	-	-	-	NIPA2		
		35	14	8,7	6,8	11 M6	II MO	11 100		MO	3	4
58±0,2	9,2 56	45±0,01	30	11	0.2	15	M8	-	-	-	NIPA2	
		45	18	9,2	9,2 15	10 100	4	5	54	NIF AZ		
50±0,2	72	50±0,015	34	12,5	125 0.2	2 15	M8	-	-	-		
50±0,2	12	50	12,5 9,2 15 M8	1010	M18 4 7 5	54	NIPA2					


Solid shafts Hollow shafts

Matrix for preselection of solid and hollow shafts	Solid shafts and h	nollow s	shafts	Shaft diameter d _{LW} mm from to	Standard tolerance for shaft
	Solid shafts Without threaded holes	W		4 - 80	h6
	Solid shafts With threaded holes	W		10 - 80	h6
	Hollow shafts	WH		12 - 80	h7
Definition: ■ Available by agreement ● Available	Shafts According to customer requirements	W		10 - 80	h6, h7
	¹⁾ Not available fo		meters.		

²⁾ For WH, Cf53 or C60.

Special tolerances, only for shafts made from quenched and tempered steel		Steel			Coating ¹⁾		Description
		Quenched and tempered steel ²⁾	Corrosion-resi		Hard chromium	Corrotect®	
		Cf53	X46Cr13	X90CrMoV18			Page
j5	f7	•					109
j5	f7	•					113
h7	-	•	_	_			109
j5	f7	•					114

Product overview Solid shafts, hollow shafts

Solid shafts, hollow shafts

Features	Solid and hollow shafts are high precision shafts made from quenched and tempered steel to rolling bearing quality and are supplied in metric sizes.
	Hollow shafts are particularly suitable for reduced-mass designs. For location, solid shafts can be provided with radial and axial threaded holes or can, by agreement, be produced completely in accordance with a customer drawing, see page 113 to page 117.
High precision raceway for economical linear guidance systems	The material quality of the shafts guarantees high dimensional and geometrical accuracy (roundness, parallelism). Due to their high surface hardness and surface quality, the shafts are highly suitable as precision raceways for linear ball bearings.
	High precision shafts are also suitable as guide rods for plain bushes, as stretch and levelling rollers and in the construction of equipment and automatic machinery.
	They can be combined with linear ball bearings, yoke type, stud type, ball bearing and profiled track rollers to give linear guidance systems that are rigid, precise, economical and ready to fit, with high load carrying capacity and a long operating life.
Steels, hardness, surface, tolerances, lengths	Shafts made from Cf53 (material number 1.1213) are induction hardened and ground; the surface hardness is 670 HV + 165 HV (59 HRC + 6 HRC).
	Hollow shafts are only available made from quenched and tempered steel.
Shafts made from corrosion-resistant steel to ISO 683-17 and EN 10880	As an alternative to quenched and tempered steel, solid shafts are also available in corrosion-resistant steels, for example X46Cr13 (material number 1.4034) or X90CrMoV18 (material number 1.4112). The surface hardness in the case of X46 is 520 HV + 115 HV (52 HRC + 4 HRC). The surface hardness in the case of X90 is 580 HV + 85 HV (54 HRC + 4 HRC).
	These steels are particularly suitable for use in the foodstuffs industry, medical equipment and semiconductor technology.
	The suffix is X46 or X90.
!	Due to the hardness curve, shafts made from the materials X46Cr13 and X90CrMoV18 have only limited corrosion resistance on the end faces. This also applies to any soft-annealed areas.

Solid shafts, hollow shafts

Hardness, surface, tolerances, lengths	A uniform hardening depth will ensure a smooth transition from the hardened surface layer to the tough, normally annealed core, which can support bending stresses.
	The standard surface is Ra 0,3.
	Solid shafts have the normal tolerance h6, while hollow shafts have h7.
	High precision shafts are available in single piece lengths up to 6 000 mm. Longer shafts are available by agreement and are assembled (with mortice and tenon joints).
	Available steels and tolerances, see page 112.
Coatings	Coatings and hard chromium coating provide optimum anti-wear and anti-corrosion protection for shafts and are optional. The characteristics of the coatings are also shown in the table Coatings, page 111.
Hard chromium coating – Anti-wear protection	Hard chromium coating is suitable for applications in which a high degree of anti-wear protection is required. The chromium coating also offers good corrosion resistance.
	Chromium coated shafts are to tolerance h7. The thickness of the chromium coating is at least 5 μ m, the hardness is 800 HV to 1050 HV.
	The suffix is CR.
Corrotect [®] – Anti-corrosion protection	Corrosion-resistant shafts are coated with the special coating Corrotect $^{\ensuremath{\mathbb{B}}}$ and, for production reasons, have centring or threaded holes in the end faces.
	The inside diameter of hollow shafts is not coated.
	Corrotect [®] is resistant to neutral, organic fluids such as oil, brake fluid and petrol. For applications where aqueous salt solutions in the pH range from 5 to 10 are present, Corrotect [®] is also suitable due to its good resistance.
	The suffix is RRF.
	Corrotect [®] reduces the adhesion of weld spatter.
•	Corrotect [®] can be worn away by contact seals.
	The coating is not permitted for direct contact with foodstuffs and is not suitable in abrasive ambient media.

For application in the food industry, the Schaeffler Group also offers the special coating ${\sf Corrotect}^{\&}$ Cr(VI)-free.

It thus complies with the requirements for RoHS in accordance with EU Directive 2002/95/EC. All other advantages are identical with the standard Corrotect[®] coating. The suffix is RROC.

Coatings Feature Coating Corrotect[®] Hard chromium Cr(VI)-containing¹⁾ CR(VI)-free Suffix RRF RROC Colour Black Colourless, Chromium blue to iridescent 0,5 - 5,0 Coating thickness 0,5 - 5,0 5,0 - 15,0 in µm Composition Zinc alloyed Zinc alloyed Chromium with iron and with iron cobalt 300 Coating hardness 300 800 - 1050 in HV Anti-corrosion 96 96 120 protection²⁾ in h Anti-wear protection yes Maximum shaft length 3 500 3 500 $\emptyset 6 - 8 = 3900$ in mm $\emptyset \ge 10 = 5900$ Cr(VI)-free no yes no

 $^{1)}\,$ Cr(VI)-containing parts are not suitable for the food industry.

²⁾ Salt spray test to DIN 50021.

Machined surfaces, end faces and bores may be uncoated.

Available materials, coatings, tolerances Solid and hollow shafts

Shaft diameter	Solid shafts	Hollow shafts					
	Material						
	Quenched and tempered steel			X46Cr13	X90CrMoV18	Quenched and tempered steel	
	Tolerance ³⁾	ance ³⁾ CR ¹⁾ RRF RROC ²⁾				Tolerance	
mm	h6	h7	h6	h6	h6	h7	
4	•	-		-	•	-	
5	•	-		-	-	-	
6	•	•		•	•	-	
8	•	•		•	•	-	
10	•	•		•	•	-	
12	•	•		•	•	•	
14	•	•		•	•	-	
15	•	•		•	•	-	
16	•	•		•	•	•	
20	•	•		•	•	•	
25	•	•		•	•	•	
30	•	•		•	•	•	
40	•	•		•	•	•	
50	•	•		•	•	•	
60	•	•		-	-	•	
80	•	•		-	-	•	
Available by agreement							

■ Available by agreement.

ullet Available design.

¹⁾ Hard chromium coating, see page 110.

 $^{2)}\ \mbox{Corrotect}^{\mbox{$(\mbox{$\mbox{$(\mbox{$\mbox{$}(\mbox{$\mbox{$}(\mbox{$\mbox{$}(\mbox{$\mbox{$}(\mbox{$\mbox{$}(\mbox{$\mbox{$}(\mbox{$\mbox{$}(\mbox{$\mbox{$}(\mbox{$\mbox{$}(\mbox{$\mbox{$}(\mbox{$\mbox{$}(\mbox{$\mbox{$}(\mbox{$}\mbox{$\mbox{$}(\mbox{$\mbox{$}(\mbox{$\mbox{$}(\mbox{$}\mbox{$}\mbox{$}\mbox{$\mbox{$}(\mbox{$\mbox{$}\mbox$

³⁾ Other tolerances available by agreement.

Solid shaftsWhere shafts are to be supported or connected to other elements,
fixing holes are required.The standard threaded holes for solid shafts are defined as

The standard threaded holes for solid shafts are defined as hole patterns B01 to B05 in accordance with the table.

In addition, holes may be made in accordance with a customer drawing with or without threads, *Figure 1*, page 114 to *Figure 13*, page 117.

Ordering examples, see page 121.

Codes for hole patterns

Code	Design of holes
B01	Axial threaded hole on one side
B02	Axial threaded holes on both sides
B03	Radial threaded holes
B04	Radial threaded holes and axial threaded hole on one side
B05	Radial threaded holes and axial threaded holes on both sides

Solid shafts, hollow shafts

Shafts according to customer requirements

In order to place enquiries for special shafts, please use your own drawing or copy our templates and complete using the required values, *Figure 1* to *Figure 13*, page 117.

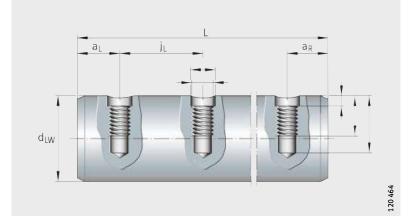
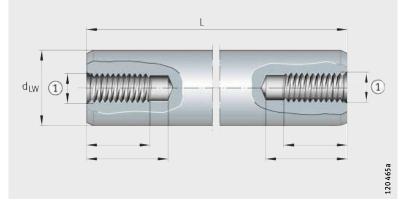
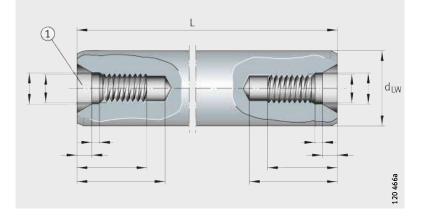
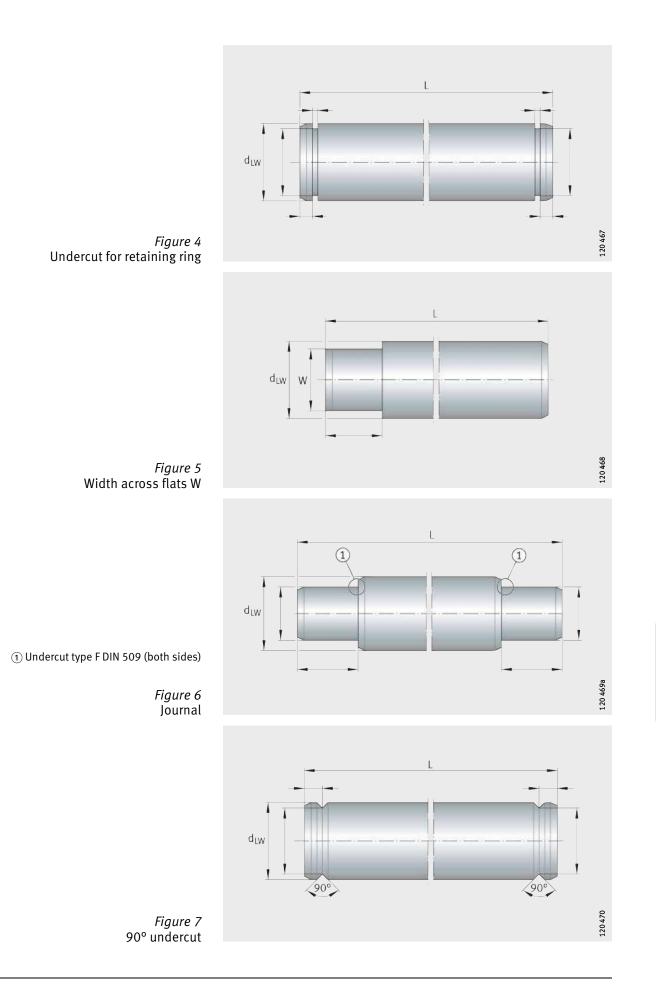
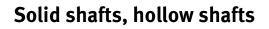
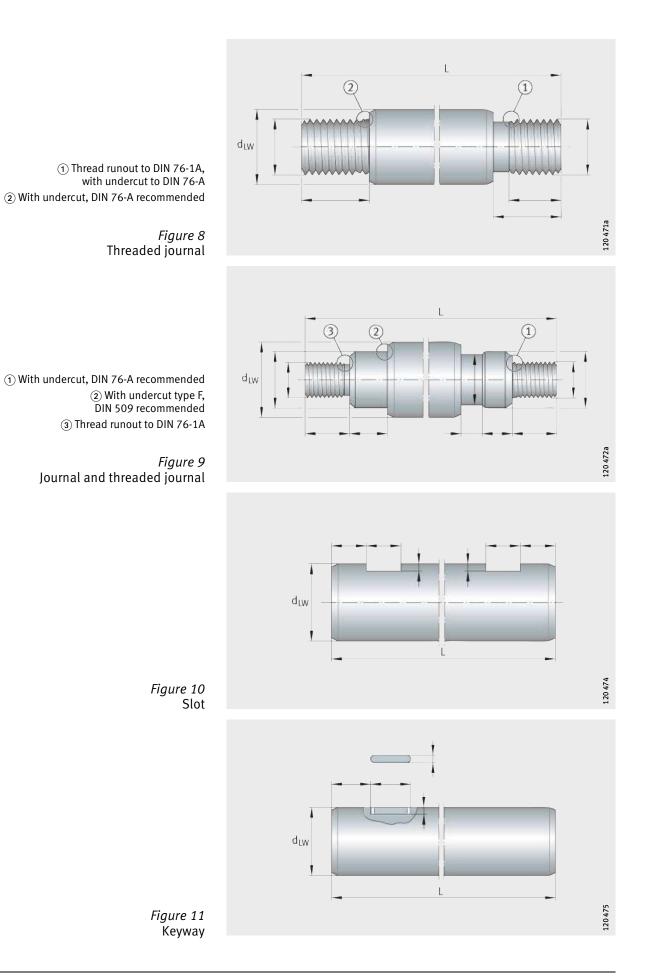




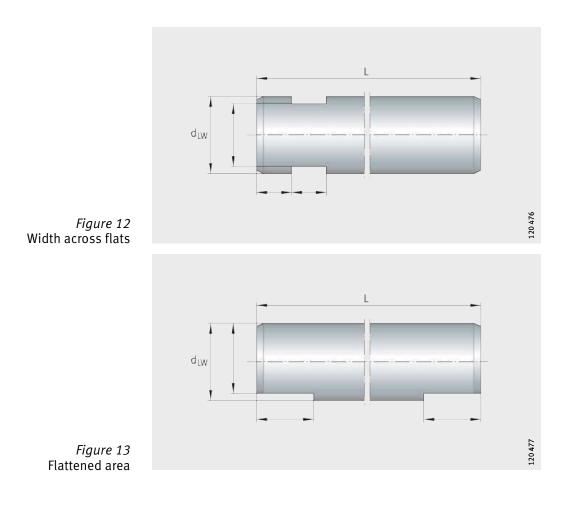
Figure 1 Radial holes with and without threads



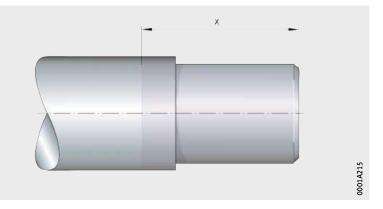

① Diameter to DIN 336 or DIN 13


Figure 2 Internal threaded hole, on one or both sides

(1) For threaded hole with centring hole DIN 332-D recommended


> Figure 3 Internal threaded hole with centring hole

116 | **WF 1**


Solid shafts, hollow shafts

Shaft machining, shaft specification Soft annealed shafts

Additional machining (such as journals, flattened areas, external threads) may require soft annealing of the corresponding areas. In this case, slight changes may occur in the dimensional and geometrical tolerances as well as the surface quality of the soft annealed area, *Figure 14*. Material discolouration may occur in the annealed area and there may be residual hardness in the transitional zone.

In the case of corrosion-resistant steels, the X class materials, the anti-corrosion protection is restricted here.

x = soft annealed area

Figure 14 Soft annealed shaft

Standard chamfer

as a function of shaft diameter

Chamfer,

After cutting to length, both ends of the shaft are chamfered, *Figure 15* and table. However, they can also be supplied without chamfers as a parting cut, *Figure 16*, page 119.

Shaft diameter d _{LW}	Chamfer x	Axial runout t ₄
mm	mm	mm
$d_{LW} \leq 8$	$0,5 imes45^{\circ}$	0,2
$8 < d_{LW} \leq 10$	1 ⁺¹	0,2
$10 < d_{LW} \leq 30$	1,5 ⁺¹	0,3
$30 < d_{LW} \leq 80$	2,5 ⁺¹	0,5

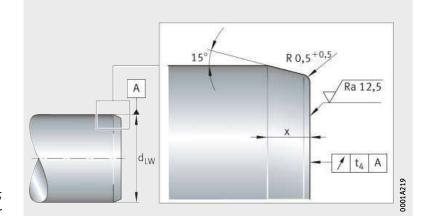
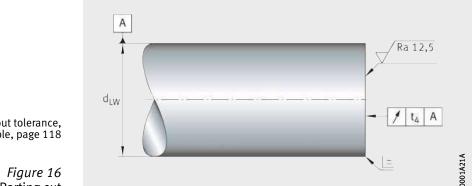



Figure 15 Standard chamfer

Parting cut In the case of a parting cut, the shaft is only cut to length, *Figure 16*. There is no additional machining of the end faces. A burr may be present. The suffix is T.

t₄ = axial runout tolerance, table, page 118

Parting cut

The standard straightness is shown in *Figure 17*.

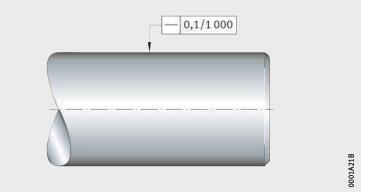


Figure 17 Straightness

Shafts with mortice and tenon joint

If the shaft length is in excess of the stock length, the shafts are joined together.

The individual sections of shafts are joined by means of mortice and tenon joints, *Figure 18*. The joints are marked accordingly. Shafts screwed together are available by agreement.

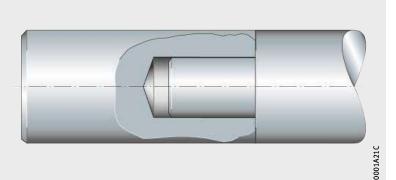
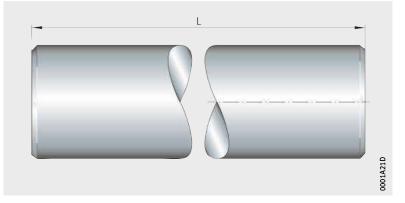


Figure 18 Shaft with mortice and tenon joint

Solid shafts, hollow shafts


Accuracy

Length tolerance

Length tolerances are dependent on the shaft length, see table and *Figure 19*.

Special tolerances are available by agreement.

Shaft length L mm		Tolerance mm
over	incl.	max.
-	400	±0,5
400	1 000	±0,8
1 000	2 000	±1,2
2 000	4 000	±2
4 000	6 000	±3

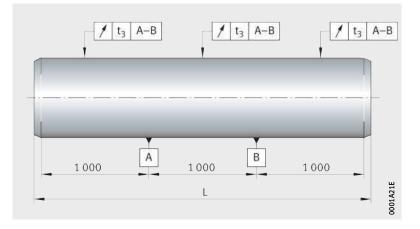


Figure 19 Length tolerance

Straightness value to ISO 13012

The measurement points are separated by a distance of 1000 mm. Shafts < 1000 mm have a maximum of two measurement points, *Figure 20*.

The straightness tolerance is half of the dial gauge value with a shaft revolution of 360°.

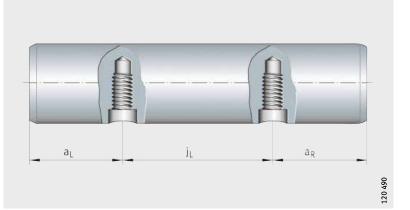
Figure 20 Straightness measurement

Ordering example, ordering designation

rdering designation		
Solid shaft,	Туре	W
without machining	Shaft diameter d _{LW}	20
	Tolerance	h6
	Material	Cf53
	Coating	_
	Length	1 200
	Parting cut	_
	Standard chamfer	No suffix
		no sum
Ordering designation	W20/h6-Cf53-1200	
Hollow shaft,	Туре	WH
without machining	Shaft diameter d _{IW}	20
	Tolerance	h7
	Material	C60
	Coating	_
	Length	1 500
	Parting cut	T
	Standard chamfer	_
Ordering designation	WH20/h7-C60-1 500-T	
Ordering designation	WH20/II/-C00-1 300-1	
Solid shaft,	Туре	W
with machining	Shaft diameter d _{LW}	30
	Tolerance	h7
	Material	Cf53
	Coating	Cr
	Hole pattern	B05
	Axial threaded hole	M12
	Radial threaded hole	M10
	Hole pitch, radial threaded hole	100
	Length	1110
	Parting cut	Т
	Standard chamfer	_
	Distance a _l	60
	Distance a_R	50
Ordering decignation		
Ordering designation	W30/h7-Cf53-Cr-B05/M12-M10×10	00-1110-1-00-20

Solid shaft, according to customer requirements

If the standard designations are not sufficient to describe the shaft, please submit a drawing with your enquiry.


Possible ordering designation for standard shafts

Type Shaft diameter d_{LW} Tolerance ¹⁾ Material ²⁾ Coating Hole pattern Axial threaded hole ³⁾ Radial threaded hole ³⁾ Hole pitch, radial threaded hole j _L Length ³⁾ Parting cut Standard chamfer Distance a_R	W, WH 10 to 80 h6, h7 Cf53, X46, X90 Cr, RROC B01, B02, B03, B04, B05 M3 to M24 M4 to M14 Measured from centre point of hole, <i>Figure 21</i> Single piece up to 6 000 T No suffix Start of shaft – first hole, <i>Figure 21</i> Last hole – end of shaft,
Distance a _R	Figure 21

¹⁾ Available tolerances are dependent on diameter, see dimension table page 124 and page 126.

 $^{2)}\,$ Hollow shafts are only available in Cf53 and C60.

³⁾ Dependent on diameter, see dimension table page 124 to page 126.

Figure 21 Hole pitch of radial threaded hole j_L

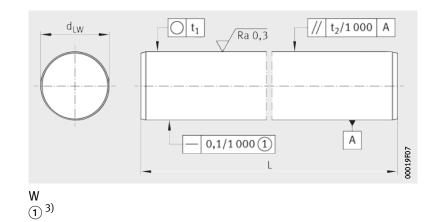
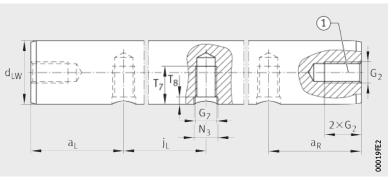

Shaft guidance system	 Elements of shaft guidance systems (linear ball bearings, solid a hollow shafts) must be ordered separately. The ordering designation of an element comprises the designation and additional specific data – where necessary, see ordering designation for shaft with axial threaded hole, linear ball bearing and <i>Figure 22</i>. The designations are given in the dimension tables. The unit is described in greater detail by means of the additional data. 				
Required	A shaft guidance system in a corrosion-resistant design with two sealed and corrosion-resistant linear ball bearings.				
Shaft with axial threaded holes	Corrosion-resistant shaft Code for hole pattern Axial threaded hole Shaft length	W20/h6-X90 B02 M8 3 500			
Ordering designation	1× W20/h6-X90-B02/M8-3500				
Linear ball bearing	Linear ball bearing Size code Contact seals on both end faces Corrotect [®] coating Relubrication facility	KB 20 PP RR AS			
Ordering designation	2×KB20-PP-RR-AS				

Figure 22 Shaft with axial threaded holes, two linear ball bearings

120 310

Solid shafts

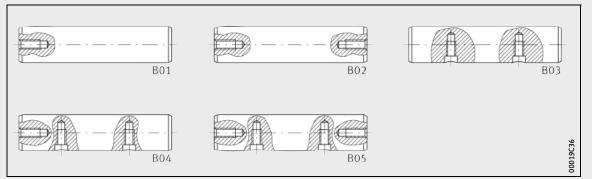

Dimension tabl	e · Dimensions	in mm					
Designation	Mass	Dimensio	ons	Tolerance	Roundness	Parallelism	Surface hardening depth
	m	d _{LW}	L	h6	t ₁	t2 ¹⁾	SHD ²⁾
	\approx kg/m			μm	μm	μm	min.
W04	0,1	4	2 500	0 -8	4	5	0,4
W05	0,15	5	4 000	0 -8	4	5	0,4
W06	0,22	6	4 000	0 -8	4	5	0,4
W08	0,39	8	4 000	0 -9	4	6	0,4
W10	0,62	10	6 0 0 0	0 -9	4	6	0,4
W12	0,89	12	6 000	0 -11	5	8	0,6
W14	1,21	14	6 000	0 -11	5	8	0,6
W15	1,39	15	6 000	0 -11	5	8	0,6
W16	1,58	16	6 000	0 -11	5	8	0,6
W20	2,47	20	6 0 0 0	0 -13	6	9	0,9
W25	3,85	25	6 0 0 0	0 -13	6	9	0,9
W30	5,55	30	6 0 0 0	0 -13	6	9	0,9
W40	9,87	40	6 0 0 0	0 -16	7	11	1,5
W50	15,41	50	6 0 0 0	0 -16	7	11	1,5
W60	22,2	60	6 0 0 0	0 -19	8	13	2,2
W80	39,45	80	6 0 0 0	0 -19	8	13	2,2

¹⁾ Differential diameter measurement.

²⁾ To DIN ISO 13012.

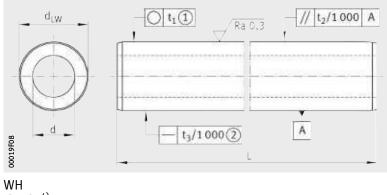
 $^{3)}$ (1) For shaft length < 400 mm, max. straightness tolerance of 0,04 mm.

Recommended threaded holes for solid shafts


Axial and radial threaded holes (1)²⁾

Dimension table · Dimensions in mm																			
Desig-	Axial threaded hole								Radial threaded hole										
nation d _{LW}	G ₂						jL			a _{L min} 1) Hole pattern B03	a _{R min} 1) Hole pattern B04–B05	T ₇	Т ₈	N ₃	G ₇				
W08	M3	-	-	-	-	-	_	-	_	_	-	_	-	-		-	-	-	-
W10	M3	M4	-	_	_	-	-	-	-	-	-	-	-	-		-	-	_	-
W12	-	M4	M5	I	I	-	-	-	-	-	75	-	120	10		7	2	5	M4
W14	-	M4	M5	M6	-	-	-	I	-	-	-	-	-	-		-	-	Ι	-
W15	-	-	M5	M6	M8	-	-	-	-	-	-	-	-	-		-	-	-	-
W16	-	-	M5	M6	M8	-	-	-	-	-	75	100	150	15		9	2,5	6	M5
W20	-	I	-	-	-	-	_		-	_	-	-	150	15		9	2,5	6	M5
W20	-	I	1	M6	M8	M10	-	I	-	-	75	100	150	15		11	3	7	M6
W25	-	I	-	-	-	-	-	I	-	-	-	-	150	15		11	3	7	M6
W25	-	-	-	-	M8	M10	M12	-	-	-	75	120	200	15	$3 \cdot G_2 + G_7$	15	3	9	M8
W30	-	-	-	-	-	-	-	-	-	-	-	-	150	15		11	3	7	M6
W30	-	-	-	-	-	M10	M12	M16	-	-	100	150	200	20		17	3,5	11	M10
W40	-	-	-	-	-	M10	M12	M16	-	-	150	200	300	20		19	4	11	M10
W40	-	-	-	-	-	M10	M12	M16	-	-	100	-	-	20		21	4	13	M12
W40	-	-	-	-	-	-	-	-	-	-	-	-	150	20		19	4	11	M10
W50	-	-	-	-	-	-	M12	M16	M20	-	-	200	300	20		21	4	13	M12
W50	-	-	-	-	-	-	M12	M16	M20	-	100	-	-	20		25	4	15	M14
W60	-	-	-	-	-	-	-	M16	M20	M24	-	-	-	_		-	-	-	-
W80	-	-	-	-	-	-	-	M16	M20	M24	-	-	-	-		-	-	-	-
. —																			

 $^{1)}\,\,a_L^{},a_R^{}$ are dependent on the length of the shaft.

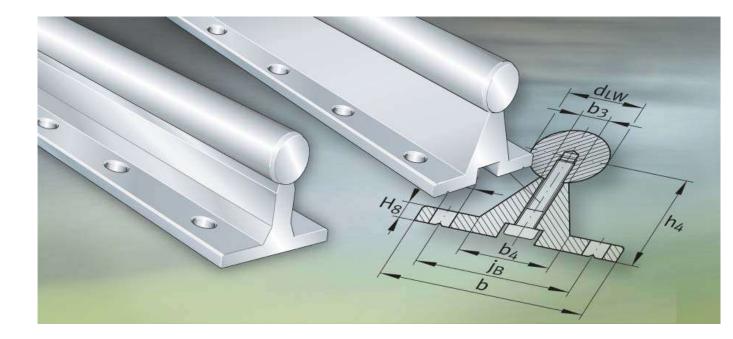

Calculation, see page 134.

In the case of variants in accordance with codes B04 and B05, the axial threaded holes must be taken into consideration. ²⁾ ① Depending on the hole diameter, the shaft diameter may be larger in the region of the axial hole, as a result of which there may be a deviation from the tolerances.

Codes B01 to B05 for hole patterns

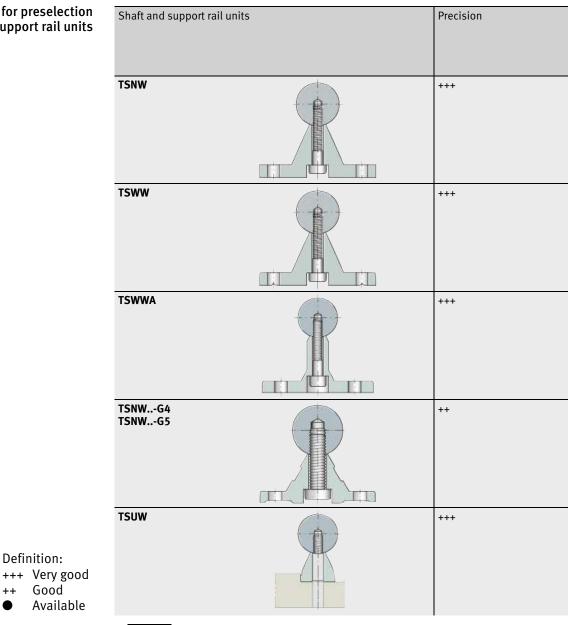
Hollow shafts

Dimension table · Dimensions in mm									
Designation	Mass	Dimensions		Inside diameter	Tolerance	Parallelism	Straightness tolerance	Surface hardening depth	
	m	d _{LW}	L	d ¹⁾	d _{LW} h7 ³⁾	t ₂	t ₃	SHD ²⁾	
	≈kg/m		max.		μm	μm	μm	min.	
WH12	0,79	12	5 700	4 ±0,45	0 -18	7	0,3	0,8	
WH16	1,26	16	5 700	7 ±0,15	0 -18	7	0,3	0,8	
WH20	1,28	20	6 000	14 ±0,15	0 -21	9	0,2	1,2	
WH25	2,4	25	7 100	15,4±0,15	0 -21	9	0,2	1,2	
WH30	3,55	30	7 100	18 ±0,15	0 1	9	0,2	1,5	
WH40	5,7	40	7 100	26 ±0,15	0 -25	11	0,1	1,5	
WH50	10,58	50	6 500	28 ±0,25	0 -25	11	0,1	1,5	
WH60	14,2	60	7 300	36 ±0,3	0 -30	13	0,1	1,5	
WH80	20,8	80	7 300	57,4±0,35	0 -30	13	0,1	2,2	

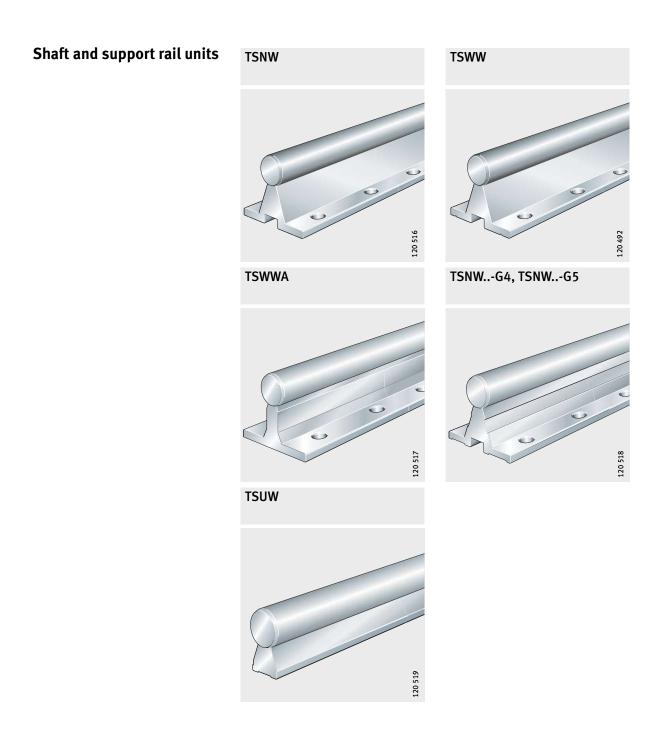

¹⁾ Difference in the wall thickness relative to the original material $\pm 5\%$.

²⁾ To DIN ISO 13012.

³⁾ Diameter tolerance h6 available by agreement.


⁴⁾ ① The roundness corresponds to no more than half the diameter tolerance.
 ② For shaft length < 500 mm, max. straightness tolerance of 0,1 mm.

Matrix for preselection of shaft and support rail units


++

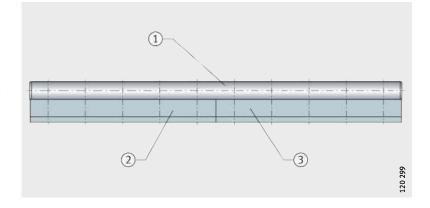
¹⁾ Location by screw mounting from below; threaded hole in the shaft.

Shaft diameter d _{LW} in mm							Features	Location	Description	
						Thread	Through hole			
12	16	20	25	30	40	50				Page
•	•	•	•	•	•	•	For location from above	-	yes	133
•	•	•	•	•	•	•	 For location from above High position of shaft 	-	yes	133
•	•	•	•	•	-	-	For location from above Narrow crosspiece	-	yes	133
•	•	•	•	•	•	-	 For location from above Accuracy class (G4, G5) dependent on shaft diameter Economical 	-	yes	133
•	•	•	•	•	•	•	Threaded holes from below	1)	-	133

Features Shaft and support rail units TS..W are composite units comprising a raceway shaft screw mounted to an aluminium support rail. The shaft protrudes approx. 2 mm to 3 mm beyond the end of the support rail at both ends.

The raceway shaft is made from quenched and tempered steel, see page 109. Corrosion-resistant design available by agreement.

Shaft and support rail units are composed of several individual sections depending on their length.


Shafts made from special materials such as those with coatings are available by agreement.

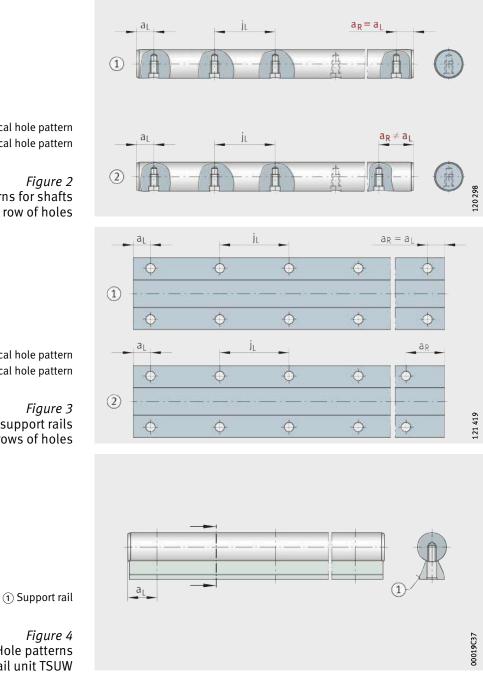
Multi-piece raceway shafts and shaft and support rail units

If the guidance systems are of such a length that shaft and support rail units TS..W cannot be achieved using single-piece shafts, shafts and support rails are supplied as multi-piece units, *Figure 1*. The joint locations on the shaft sections have mortice and tenon joints and are polished.

The joint locations on the shafts and support rails are offset from each other.

The maximum length of single-piece shaft and support rail units is 6 000 mm.

Shaft
 Support rail 1
 Support rail 2


Figure 1 Shaft and support rail unit with multiple support rail sections

Design and safety guidelines Hole patterns for shaft and support rail units

Unless stated otherwise, raceway shafts and shaft and support rail units are supplied with a symmetrical hole pattern, Figure 2 to Figure 4.

An asymmetrical hole pattern may be available at customer request. In this case, $a_{L max} \ge a_{L} \ge a_{L min}$ and $a_{R max} \ge a_{R} \ge a_{R min}$.

(1) Symmetrical hole pattern (2) Asymmetrical hole pattern

Hole patterns for shafts with one row of holes

1 Symmetrical hole pattern (2) Asymmetrical hole pattern

Hole patterns for support rails with two rows of holes

Hole patterns for shaft and support rail unit TSUW

Maximum number of pitches between holes

The number of pitches between holes is the rounded whole number equivalent to:

$$n = \frac{l - 2 \cdot a_{L \min}}{j_l}$$

1

The distances a_L and a_R are generally determined by:

$$a_L + a_R = l - n \cdot j_L$$

For raceway shafts and shaft and support rail units with a symmetrical hole pattern:

$$\boldsymbol{a}_L = \boldsymbol{a}_R = \frac{1}{2} \cdot \left(\boldsymbol{I} - \boldsymbol{n} \cdot \boldsymbol{j}_L \right)$$

Number of holes:

$$x = n + 1$$

n mm Maximum possible number of pitches or recommended distance between screws on shaft and support rail units with T-slots

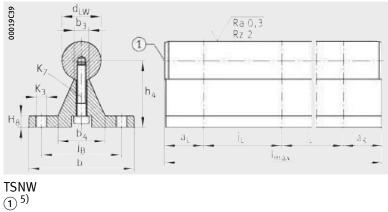
mm Length of shaft and support rail unit a_L, a_R mm Distance between start or end of shaft and support rail unit and nearest hole mm a_{L min}, a_{R min} Minimum values for a_L, a_R according to dimension tables a_{L max}, a_{R max} mm Maximum values for a_L, a_R according to dimension tables mm j_L ... Distance between holes mm Number of holes on shaft and support rail units with T-slots: number of screws.

Х

If the minimum and maximum values for a_I and a_R are not observed, the counterbores of the holes may be intersected. The position a_1 for shaft and support rail unit TSUW is shown in *Figure* 4, page $1\overline{3}4$.

Accuracy

Length tolerances for shafts and shaft and support rail units


The length tolerances are shown in the table.

Tolerances	
------------	--

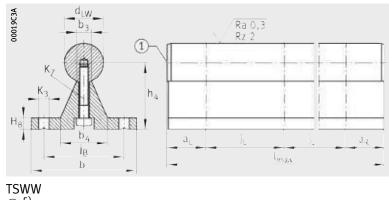
Length of shaft or shaft and support rail unit L	Length tolerance
mm	mm
Single-piece and multi-piece raceway shaft and support rail units	\pm 0,1% of total length
L≦ 400	±0,5
$400 < L \le 1000$	±0,8
$1000 < L \le 2000$	±1,2
$2000 < L \leq 4000$	±2
$4000 < L \le 6000$	±3

Ordering example, ordering designation

Shaft and support rail unit	Type Shaft diameter d _{LW} Length Distance a _L Distance a _R Corrosion-resistant design	TSNW 25 1 253 26 27 Available by agreement
Ordering designation	TSNW25-1253-26-27	
Possible ordering designation for standard shaft and support rail units	Type Shaft diameter d _{LW} Length Distance a _L Distance a _R Corrosion-resistant design	TSWW, TSNW, TSUW, TSWWA 12 to 50 1 200 Start of shaft – first hole Last hole – end of shaft Available by agreement

Dimension ta	ble · Dimens	sions ir	n mm											
Designation	Mass	Dime	nsions			Mounti	ng dime	nsions						
	m	d_{LW}	b	h ₄ 1)	l _{max} ²⁾	b ₃	b ₄	j _B	j _L	a _L /a _R	3)	H ₈	K ₃ ⁴⁾	K ₇
	≈g/m	h6		±0,02	±3					min.	max.			ISO 4762
TSNW12	1 670	12	40	22	6 0 0 0	5	17	29	75	20	69	5	4,5	M4×18
TSNW16	2 950	16	45	26	6 0 0 0	6,8	22,4	33	100	20	93	5	5,5	M5×22
TSNW20	3 950	20	52	32	6 0 0 0	7,5	26,3	37	100	20	92	6	6,6	M6×25
TSNW25	5 600	25	57	36	6 0 0 0	9,8	30	42	120	20	110	6	6,6	M8×30
TSNW30	7 880	30	69	42	6 0 0 0	11	33,4	51	150	20	139	7	9	M10×35
TSNW40	12830	40	73	50	6 0 0 0	14,5	39,4	55	200	20	189	8	9	M10×35
TSNW50	19380	50	84	60	6 0 0 0	18,5	45,2	63	200	20	188	9	11	M12×40

 $^{1)}\,$ In relation to the nominal shaft diameter, measured whilst clamped.


²⁾ Maximum length of single-piece shaft and support rail units; longer shaft and support rail units, see page 133. Depending on the length of the shaft and support rail unit, the support rail is composed of several individual sections.

 $^{3)}$ Dimensions $a_{\rm l}/a_{\rm R}$ are dependent on the length of the shaft and support rail unit. Calculation, see page 135.

⁴⁾ For fixing screws DIN 7984.

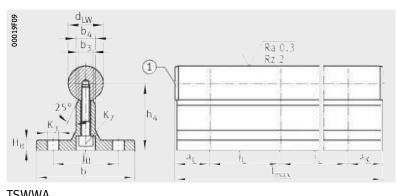
If there is a possibility of settling, the screws should be secured against rotation.

⁵⁾ (1) The shaft may if necessary protrude on both sides beyond the support rail by approx. 3 mm.

	-	٠	•	
(1			5)	

Dimension ta	ble · Dimer	nsions	in mm											
Designation	Mass	Dime	nsions			Mount	ing dime	nsions						
	m	d_{LW}	b	h ₄ 1)	l _{max} ²⁾	b ₃	b ₄	j _B	j _L	a _L /a _R	3)	H ₈	K ₃ ⁴⁾	K ₇
	\approx g/m	h6		±0,02	±3					min.	max.			ISO 4762
TSWW12	1 670	12	40	22	6 000	5	17	29	120	20	114	5	4,5	M4×18
TSWW16	3 1 5 0	16	54	32	6 000	6,8	24,7	41	150	20	143	6	5,5	M5×25
TSWW20	4 0 3 0	20	54	34,02	6 000	7,8	24,7	41	150	20	143	6	5,5	M5×25
TSWW25	5 900	25	65	39,66	6 000	9,3	30,3	51	150	20	142	6	6,6	M6×30
TSWW30	7 580	30	65	42,19	6 000	9,3	30,3	51	150	20	142	6	6,6	M6×30
TSWW40	14 250	40	85	60	6 000	16,3	46	65	150	20	139	10	9	M10×45
TSWW50	19750	50	85	65,06	6 000	16,3	46	65	150	20	139	10	9	M10×45

 $^{1)}\,$ In relation to the nominal shaft diameter, measured whilst clamped.


2) Maximum length of single-piece shaft and support rail units; longer shaft and support rail units, see page 133. Depending on the length of the shaft and support rail unit, the support rail is composed of several individual sections.

 $^{3)}$ Dimensions a_L/a_R are dependent on the length of the shaft and support rail unit. Calculation, see page 135.

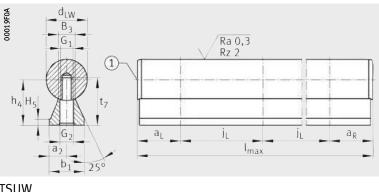
⁴⁾ For fixing screws ISO 4762 or ISO 4017 (TSWW12, DIN 7984).
 If there is a possibility of settling, the screws should be secured against rotation.

⁵⁾ ① The shaft may if necessary protrude on both sides beyond the support rail by approx. 3 mm.

 $\overset{\text{TSWWA}}{\textcircled{1}^{6)}}$

Dimension tab	ole ∙ Dimen	sions i	n mm											
Designation	Mass	Dime	nsions			Mounti	ng dim	ension	s					
	m	d_{LW}	b	h ₄ 1)	l _{max} ²⁾	b ₃	b ₄	j _B	j _L	a _L /a _R	3)	H ₈	K ₃ ⁴⁾	K ₇
	\approx g/m	h6		±0,02	±3					min.	max.			ISO 4762
TSWWA12	1 930	12	43	28	6000	5,4	9	29	75	20	69	5	4,5	M4×25 ⁵⁾
TSWWA16	2 800	16	48	30	6000	7	10	33	100	20	93	5	5,5	M5×25
TSWWA20	4120	20	56	38	6000	8,2	11	37	100	20	92	6	6,6	M6×30
TSWWA25	5830	25	60	42	6000	10,4	14	42	120	20	110	6	6,6	M8×30
TSWWA30	8 500	30	74	53	6000	11	14	51	150	20	139	8	9	M10×40

 $^{1)}\,$ In relation to the nominal shaft diameter, measured whilst clamped.


²⁾ Maximum length of single-piece shaft and support rail units; longer shaft and support rail units, see page 133. Depending on the length of the shaft and support rail unit, the support rail is composed of several individual sections.

³⁾ Dimensions a_L/a_R are dependent on the length of the shaft and support rail unit. Calculation, see page 135.

⁴⁾ For fixing screws ISO 4762 or ISO 4017.
 If there is a possibility of settling, the fixing screws should be secured against rotation.

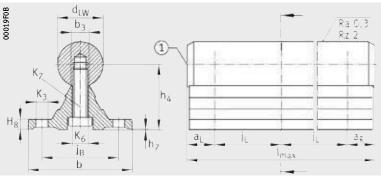
⁵⁾ Screws DIN 7984.

 $^{6)}$ ① The shaft protrudes on both sides beyond the support rail by approx. 2 mm.

Dimension ta	ble · Dimen	sions ir	n mm											
Designation	Mass	Dime	nsions			Mounti	ng dimer	isions						
	m	d_{LW}	b ₁	h ₄ ¹⁾	l _{max} ²⁾	a ₂	B ₃	j _L	a _L /a _R	3)	H ₅	G ₁	G ₂	t ₇
	\approx g/m	h6		±0,02	±3				min.	max.				
TSUW12	1 1 0 0	12	11	14,5	6 0 0 0	5,5	5	75	20	70	3	M4	4,5	15,5
TSUW16	1 880	16	14	18	6 0 0 0	7	6,8	75	20	70	3	M5	5,5	19
TSUW20	2 9 2 0	20	17	22	6 0 0 0	8,5	7,8	75	20	69	3	M6	6,6	23
TSUW25	4 4 2 0	25	21	26	6 0 0 0	10,5	9,8	75	20	68	3	M8	9	28,5
TSUW30	6 2 2 0	30	23	30	6 0 0 0	11,5	11	100	20	92	3	M10	11	31,5
TSUW40	11 0 3 0	40	30	39	6 0 0 0	15	14,5	100	20	91	4	M12	13,5	39,5
TSUW50	16980	50	35	46	6 0 0 0	17,5	18,5	100	20	90	5	M14	15,5	46

Attention!

The shaft and support rail are supplied unassembled.


 $^{1)}\ \overline{\mbox{In relation}}$ to the nominal shaft diameter, measured whilst clamped.

2) Maximum length of single-piece shaft and support rail units; longer shaft and support rail units, see page 133. Depending on the length of the shaft and support rail unit, the support rail is composed of several individual sections.

 $^{3)}$ Dimensions $a_{\rm L}/a_{\rm R}$ are dependent on the length of the shaft and support rail unit. Calculation, see page 135.

 $^{\rm 4)}$ (1) The shaft protrudes on both sides beyond the support rail by approx. 2 mm.

TSNW..-G4, TSNW..-G5 (1)⁶⁾

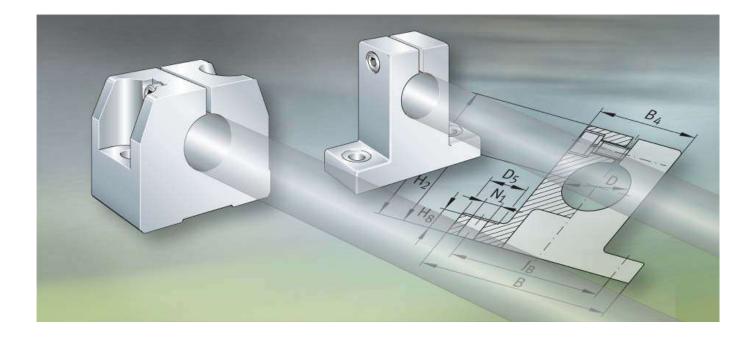
Dimension table	\cdot Dimensions in	n mm							
Designation	Mass	Dimensi	ions			Mounting	g dimension	S	
	m	d _{LW}	b	h ₄ ¹⁾	l _{max} ²⁾	b ₃	j _B	j _L	
	≈g/m	h6			±2				
TSNW12-G4	1 600	12	40	22±0,1	4 0 0 0	5	29	75	
TSNW16-G4	2 500	16	45	26±0,1	4 0 0 0	6,8	33	100	
TSNW20-G4	3 800	20	52	32±0,1	4 0 0 0	7,8	37	100	
TSNW25-G4	5 300	25	57	36±0,1	4 0 0 0	9,8	42	120	
TSNW30-G5	7 500	30	69	42±0,15	4 0 0 0	11	51	150	
TSNW40-G5	12 400	40	73	50±0,15	4 0 0 0	14,5	55	200	

¹⁾ In relation to the nominal shaft diameter, measured whilst clamped.

 $^{\rm 2)}\,$ Maximum length of single-piece shaft and support rail units.

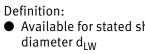
 $^{3)}$ Dimensions a_L/a_R are dependent on the length of the shaft and support rail unit. Calculation, see page 135.

⁴⁾ For fixing screws DIN 7964.
 If there is a possibility of settling, the screws should be secured against rotation.

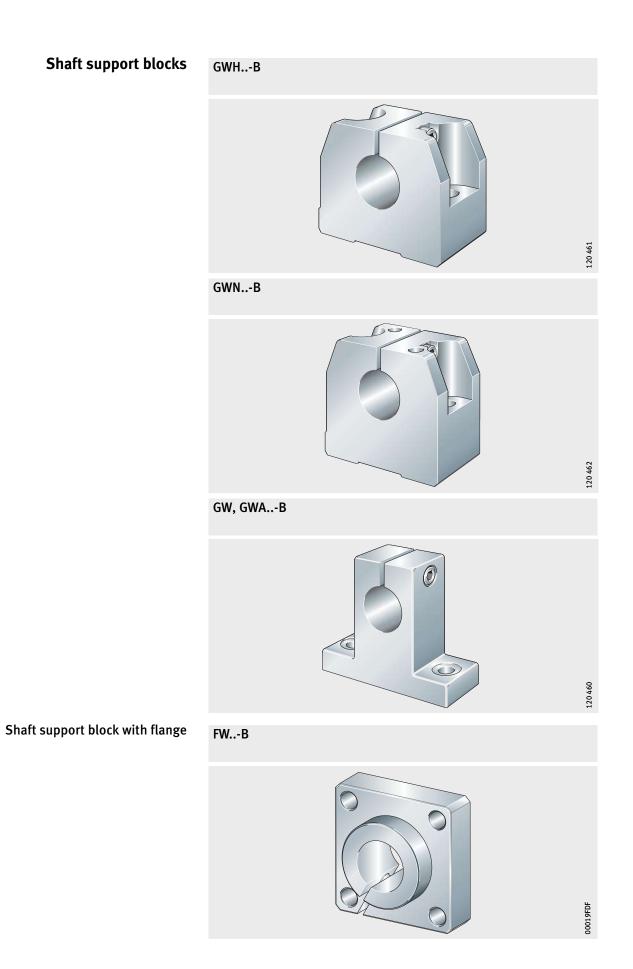

 $^{5)}$ Maximum variation of dimension h₄, measured on the same shaft and support rail unit over a length of 1000 mm.

 $^{6)}$ (1) The shaft protrudes on both sides beyond the support rail by approx. 2 mm.

a _L /a _R ³⁾		H ₈	h ₇	K ₃ ⁴⁾	K ₆	K ₇	Variation of h	4 ⁵⁾
							Accuracy class	Variation
min.	max.					ISO 4762		mm
20	69	5	0,2	4,5	4,5	M4×18	G4	0,03
20	93	5	0,2	5,5	5,5	M5×22	G4	0,03
20	92	6	0,2	6,6	6,6	M6×25	G4	0,03
20	110	6	0,3	6,6	9	M8×30	G4	0,03
20	139	7	0,3	9	11	M10×30	G5	0,04
20	189	8	0,3	9	11	M10×35	G5	0,04



Shaft support blocks

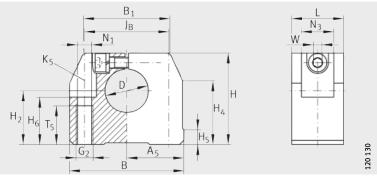

Matrix for preselection of shaft support blocks	Shaft support blocks	Material
	GWHB	Aluminium
	GWNB	Aluminium
	GW	Diecast zinc
	GWAB	Diecast zinc
nition: wailable for stated shaft liameter d _{LW}	FWB	Aluminium

For sl	naft di	amete	r d _{LW} i	n mm							Features	Location		Description
												Thread	Through hole	
06	08	10	12	14	16	20	25	30	40	50				Page
•	•	•	•	•	•	•	•	•	•	•	Low position of shaft	yes	yes	149
-	-	-	•	-	•	•	•	•	•	•	Suitable for dowelling	yes	yes	149
-	_	•	•	•	•	•	•	•	•	•	Space-saving design	-	yes	149
_	-	•	•	-	•	•	•	•	•	•	For larger fixing screws Space-saving design	-	yes	149
_	-	-	•	-	•	•	•	•	•	•	Suitable for dowelling	yes	yes	149

Product overview Shaft support blocks

148 | **WF 1**

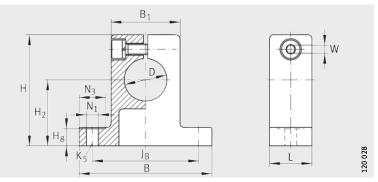
Shaft support blocks


Features Shaft support blocks are used to support shafts and locate the ends of the shaft.

They are suitable for all the solid and hollow shafts in this catalogue. They are made from either an aluminium alloy or pressure diecast zinc.

Series GWA..-B is identical in design to series GW but is suitable for larger fixing screws.

Depending on the series, the shaft support blocks have through holes or threaded holes.

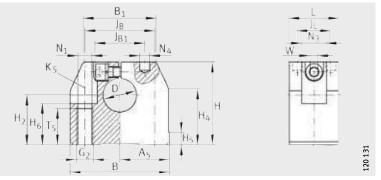

GWH..-B

Dimension ta	able ∙ D	imens	sions in	mm														
Desig-	Mass	Dime	ensions	5		Mounti	ng dim	ension	S									
nation	m	D	В	L	Н	J _B	A_5	B ₁	H ₂	H ₄	H ₅	T ₅	H_6	G ₂	N_1	N_3	K ₅ ¹⁾	W ²⁾
	≈g	H8				±0,15			±0,01									
GWH06-B	30	6	32	16	27	22	16	25	15	20,6	5	11	13	M5	4,3	10	M4	2,5
GWH08-B	30	8	32	16	27	22	16	25	16	20,6	5	11	13	M5	4,3	10	M4	2,5
GWH10-B	50	10	40	18	33	27	20	32	18	25,1	5	13	16	M6	5,3	11	M5	3
GWH12-B	50	12	40	18	33	27	20	32	19	25,1	5	13	16	M6	5,3	11	M5	3
GWH14-B	70	14	43	20	36,5	32	21,5	34	20	28,1	6,9	13	18	M6	5,3	11	M5	3
GWH16-B	70	16	43	20	36,5	32	21,5	34	22	28,1	6,9	13	22	M6	5,3	11	M5	3
GWH20-B	120	20	53	24	42,5	39	26,5	40	25	29,8	7,4	18	22	M8	6,6	15	M6	4
GWH25-B	170	25	60	28	52,5	44	30	44	31	36,6	9,9	22	26	M10	8,4	18	M8	5
GWH30-B	220	30	67	30	60	49	33,5	49,5	34	42,7	8	22	29	M10	8,4	18	M8	5
GWH40-B	480	40	87	40	73,5	66	43,5	63	42	49,7	12,8	26	38	M12	10,5	20	M10	6
GWH50-B	820	50	103	50	92	80	51,5	74	50	62,3	10,9	34	46	M16	13,5	24	M12	8

For fixing screws ISO 4762-8.8. If there is a possibility of settling, the screws should be secured against rotation.

²⁾ Width across flats.

Shaft support blocks


GW, GWA..-B

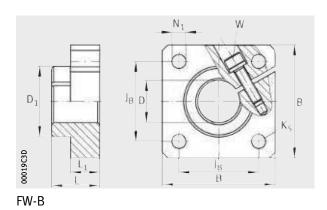
Dimension tab	le · Dimen	isions in	mm										
Designation	Mass	Dimen	isions			Mounting d	imensio	ns					
	m ≈g	D	В	L	Н	J _B	B ₁	H ₂ ±0,15	H ₈	N ₁ ¹⁾	N ₃	К ₅	Width across flats W
GW10									_	3,4	8	M3	
GWA10-B	- 30	10	37	11	30	$28 \pm 0,\!15$	18	17	5	4,5	9	M4	2,5
GW12	40	12	42	12	35	32±0.15	20	20		4,5	10	M4	- 3
GWA12-B	40	12	42	12	35	32±0,15	20	20	5,5	5,5	11	M5	- 3
GW14	60	14	46	14	38	36±0,15	23	22	6	4,5	10	M4	- 3
GWA14-B	00	14	40	14	50	JU ±0,15	20	22		5,5	11	M5	,
GW16	80	16	50	16	42	40±0,15	26	25	6,5	4,5	10	M4	- 3
GWA16-B	00	10	50	10	42	40 ±0,15	20	25	0,5	5,5	11	M5	,
GW20	150	20	60	20	50	45±0,15	32	30	7,5	4,5	10	M4	- 3
GWA20-B	150	20	00	20	50	4 J ±0,15	52	50	7,5	5,5	11	M5	,
GW25	260	25	74	25	58	60±0,15	38	35	8,5	5,5	11	M5	4
GWA25-B	200		, -	25	50	00_0,15	50	55	0,5	6,6	13	M6	-
GW30	380	30	84	28	68	68±0,2	45	40	9,5	6,6	13	M6	- 5
GWA30-B	500		01	20	00	00 _0,2		-10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	9	18	M8	
GW40	670	40	108	32	86	86±0,2	56	50	12	9,1	18	M8	6
GWA40-B	0,0	10	100	52		50 _ 0,2	50	<i></i>		11,1	22	M10	Ĭ
GW50	1 380	50	130	40	100	108±0,2	80	60	14	9	18	M8	- 6
GWA50-B	1,500		150		100	100 _0,2		00		11	22	M10	Ĭ

For fixing screws ISO 4762-8.8. If there is a possibility of settling, the screws should be secured against rotation.

Shaft support blocks

GWN..-B

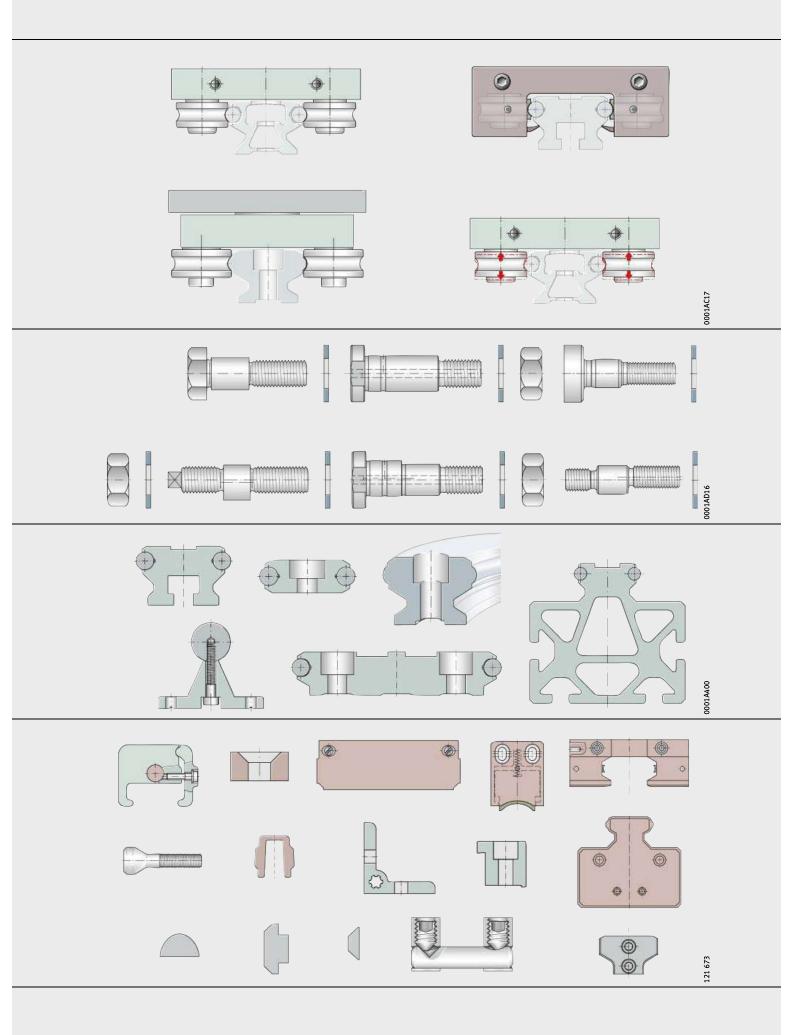
Dimension table	• · Dimension	s in mm								
Designation	Mass	Dimens	ions			Mounting di	mensions			
	m	D	В	L	Н	J _B	J _{B1}	B ₁	A ₅	JL
	≈g	H8							±0,01	
GWN12-B	60	12	43	20	35	30±0,15	20	34	21,5	13
GWN16-B	100	16	53	24	42	38±0,15	26	40	26,5	16
GWN20-B	170	20	60	30	50	42±0,15	30	44	30	20
GWN25-B	330	25	78	38	60	56±0,15	40	60	39	25
GWN30-B	450	30	87	40	70	64±0,15	45	63	43,5	26
GWN40-B	850	40	108	48	90	82±0,15	65	76	54	32
GWN50-B	1 400	50	132	58	105	100±0,2	70	90	66	36


¹⁾ Centring for dowel hole.

²⁾ For fixing screws ISO 4762-8.8.
 If there is a possibility of settling, the screws should be secured against rotation.

H ₂ ±0,01	H ₄	H ₅	T ₅	H ₆	G ₂	N ₁	N ₄ ¹⁾	N ₃	K ₅ ²⁾	Width across flats W
20	26,6	5,4	13	16,5	M6	5,3	4	10	M5	3
25	26,6	5,4	18	21	M8	6,6	5	11	M6	4
30	34,1	7,4	22	25	M10	8,4	6	15	M8	5
35	41,5	8,3	26	30	M12	10,5	8	18	M10	6
40	46,2	9,3	26	34	M12	10,5	8	18	M10	6
50	57,6	11,7	34	44	M16	13,5	10	20	M12	8
60	62	10,6	43	49	M20	17,5	12	26	M16	10

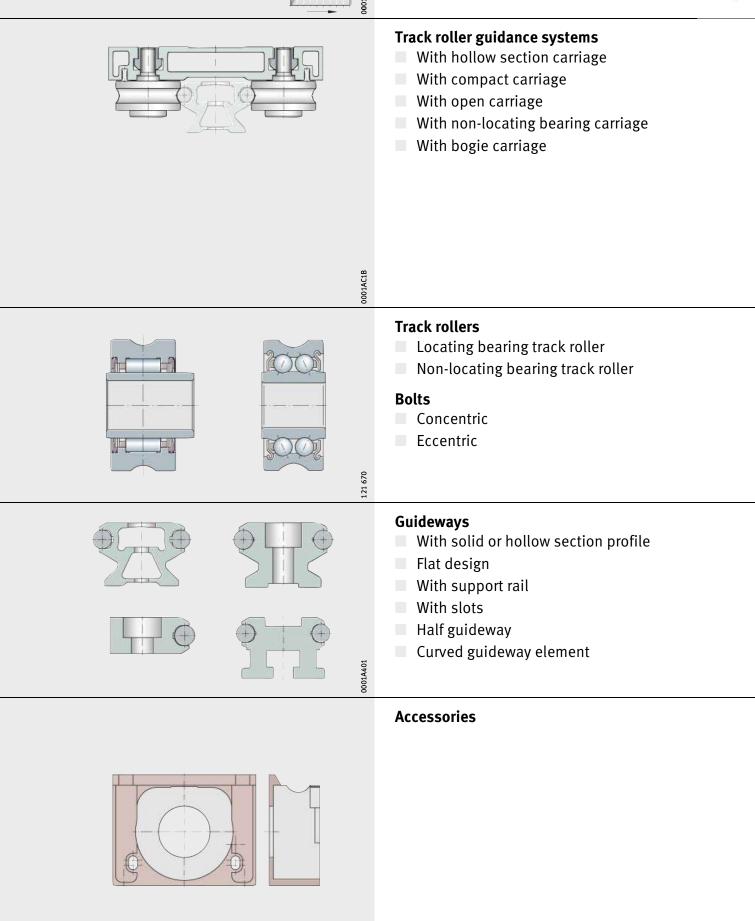
Shaft support block with flange



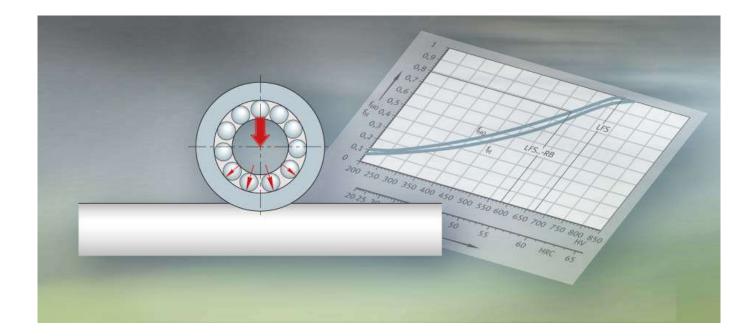
Dimension table · Dimensions in mm											
Designation	Mass	Dimensions			Mounting dimensions						
	m ≈g	D H8	В	L	L ₁	D ₁	N ₁ H13	K ₅ ¹⁾	J _B	Width across flats W	
FW12-B	50	12	40	20	12	23,5	5,5	M5	30	3	
FW16-B	80	16	50	20	12	27,5	5,5	M5	35	3	
FW20-B	100	20	50	23	14	33,5	6,6	M6	38	4	
FW25-B	160	25	60	25	16	42	6,6	M6	42	5	
FW30-B	260	30	70	30	19	49,5	9	M8	54	6	
FW40-B	700	40	100	40	26	65	11	M10	68	8	
FW50-B	900	50	100	50	36	75	11	M10	75	8	

For fixing screws ISO 4762-8.8. If there is a possibility of settling, the screws should be secured against rotation.

Track Roller Guidance Systems


Track roller guidance systems Track rollers, bolts, guideways Accessories

Technical principles



0001A402

Technical principles

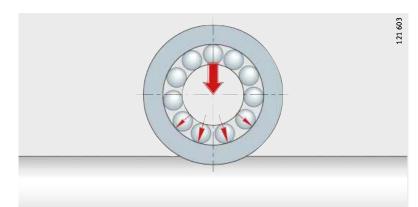
Load carrying capacity and rating life Lubrication Design of bearing arrangements Mounting Accuracy Ordering designations Operating limits

Load carrying capacity and rating life

Permissible radial loads

Permissible radial load

under dynamic loading


i

The thick-walled outer rings of the track rollers can support high radial loads. If these track rollers are used against a shaft as a raceway, the outer rings undergo elastic deformation, *Figure 1*. Compared to rolling bearings supported in a housing bore, track rollers have the following characteristics:

- modified load distribution in the bearing. This is taken into consideration by means of the basic load ratings C_{rw} and C_{Orw} used in the calculation of the rating life
- bending stress in the outer ring. This is taken into consideration by means of the permissible radial loads F_{r per} and F_{Or per}. The bending stresses must not exceed the permissible strength values of the material (due to the risk of fracture).

For rotating bearings under dynamic load, the effective dynamic load rating C_{rw} is used. C_{rw} is used to calculate the basic rating life.

The permissible dynamic radial load $F_{r per}$ must not be exceeded. If the basic static load rating $C_{0r w}$ is lower than the basic dynamic load rating $C_{r w}$, $C_{0r w}$ is used.

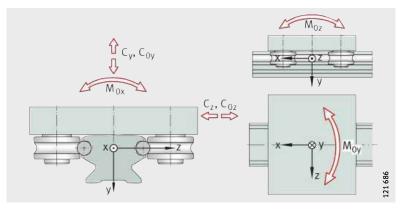
Figure 1 Deformation of the outer ring when used against a flat raceway

Permissible radial load under static loading	For bearings under static load, when stationary or with only infrequent motion, the effective static load rating $C_{0r w}$ is used. $C_{0r w}$ is used to calculate the static load safety factor S_0 . At the same time, the permissible static radial load $F_{0r per}$ must not be exceeded. In addition to the permissible radial load of the bearing, the permissible radial load of the mating track must also be taken into consideration. The basic load ratings stated are valid only in conjunction with a shaft as a mating track that is hardened (at least 670 HV) and
	ground (Ra 0,3).
Fatigue limit load	The fatigue limit load C _{ur w} is defined as the load below which – under laboratory conditions – no fatigue occurs in the material.
Calculation of the rating life	 The general methods for calculating the rating life are: the basic rating life in accordance with DIN ISO 281 the adjusted rating life in accordance with DIN ISO 281 the expanded calculation of the adjusted reference rating life in accordance with DIN ISO 281-4. These methods are described in Catalogue HR 1, Rolling Bearings, in the chapter Load carrying capacity and rating life.

Rating life of track rollers

In comparison with Catalogue HR 1, Rolling Bearings, the following values must be exchanged:

$$C_r = C_{rw}$$
$$C_{0r} = C_{0rw}$$


$$C_{ur} = C_{urw}$$
.

The carriages LFCL, LFL..-SF, LFLL, LFKL..-SF and bogie carriage LFDL contain four track rollers LFR.

The equivalent principle applies here. The corresponding parameters are taken into consideration in the basic load ratings C_y , C_{0y} , C_z , C_{0z} and the permissible moment ratings M_{0x} , M_{0y} and M_{0z} .

C_y N Basic dynamic load rating in y direction C_{0y} N Basic static load rating in y direction Ν C-7 Basic dynamic load rating in z direction C_{0z} Ν Basic static load rating in z direction Nm M_{0x} Static moment rating about x axis M_{Oy} Nm Static moment rating about y axis M_{0z} Nm Static moment rating about z axis.

In the case of track rollers with a profiled outer ring, calculation is carried out exclusively by means of the basic rating life to DIN ISO 281.

Figure 2 Load carrying capacity and load directions

Other formulae for calculating the basic rating life

$$L_{s} = 0.0314 \cdot D_{a} \cdot \left(\frac{C_{rw}}{P_{r}}\right)^{p}$$

$$L_{h} = 26.18 \cdot \frac{D_{a}}{H \cdot n_{osc}} \cdot \left(\frac{C_{rw}}{P_{r}}\right)^{p}$$

$$L_{h} = 52.36 \cdot \frac{D_{a}}{\overline{v}} \cdot \left(\frac{C_{rw}}{P_{r}}\right)^{p}$$

Rating life for carriages with four track rollers

 $L_{s} = \left(\frac{C_{y}, C_{z}}{P}\right)^{p}$

 $L_{h} = \frac{833}{H \cdot n_{osc}} \cdot \left(\frac{C_{y}, C_{z}}{P}\right)^{p}$

 $L_{h} = \frac{1666}{\overline{v}} \cdot \left(\frac{C_{v}, C_{z}}{P}\right)^{p}$ L_s 10⁵ Basic rating life in metres 10⁵ m D_a mm Rolling contact diameter of track roller, see dimension tables $C_{r w}$, C_y , C_z N Effective dynamic load rating P_r № Equivalent dynamic load (radial load) p Ball: p = 3; needle roller (non-locating bearing track roller or carriage): p = 10/3 L_{h} h Basic rating life in operating hours Н m Single stroke length for reciprocating motion min⁻¹ n_{osc} min⁻¹ Number of return strokes per minute v m/min Mean travel velocity Ρ Ν.

Equivalent dynamic load in the corresponding load direction (for applications with combined loads, please contact us).

Load carrying capacity and rating life

Operating life The operating life is the life actually achieved by a rolling bearing. It may differ significantly from the calculated rating life.

This may be due to wear or fatigue as a result of:

- deviations in the operating data
- insufficient or excessive operating clearance (track roller, guideway)
- contamination
- inadequate lubrication
- operating temperature too high or too low
- reciprocating motion with very small stroke length, which can lead to false brinelling
- high vibration load, leading to false brinelling
- very high shock loads (static overloading)
- prior damage during mounting.

Due to the variety of mounting and operating conditions, the operating life cannot be precisely calculated in advance. The most reliable way of arriving at a close estimate is by comparison with similar applications.

Static load safety factor

The indicator of static loading is the static load safety factor S_0 . This indicates the security against impermissible permanent deformations in the bearing and is determined by means of the following equation:

$$S_0 = \frac{C_{0rw}}{F_{0r}}$$

Static load safety factor for carriages with four track rollers

$$S_0 = \frac{C_0}{F_0}$$

$$S_0 = \frac{M_0}{M}$$

Static load safety factor

C_{Orw}N Effective static load rating of track roller, see dimension tables

F_{0r} N Static force acting in radial direction

C₀ N Basic static load rating of carriage, see dimension tables

F₀ N Static force acting in y and z direction

 M_0 Nm Permissible static moment in x, y, z direction

Track rollers are regarded as heavily loaded at a static load safety factor of $S_0 < 4$.

For applications with normal operating conditions, a value $\rm S_0>4$ is required.

When using individual track rollers, for example in conjunction with guideways, the decisive factor where required is the permissible load of the guideway.

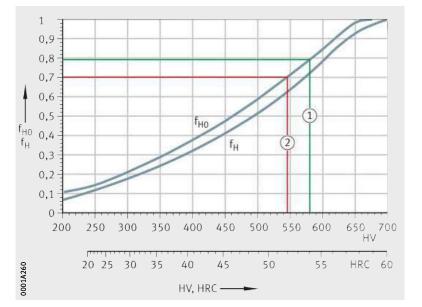
Static load safety factors $S_0 < 1$ cause plastic deformation of the rolling elements and the raceway, which can impair smooth running. This is only permissible for bearings with small rotary motions or in secondary applications.

Load carrying capacity and rating life

In general, the minimum load is calculated using the ratio

Minimum load In order to ensure that the outer ring is driven, that no slippage occurs and that the track roller does not lift from the mating track, the track rollers must be subjected to a minimum load in dynamic operation.

Differences in raceway hardness


If shafts with a lower surface hardness are used (such as X46, X90), a hardness factor must be applied, see equations and *Figure 3*.

$$C_{H} = f_{H} \cdot C$$

 $C_{0rw}/F_r < 60.$

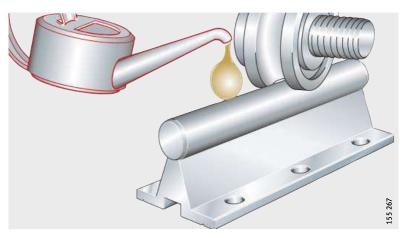
$$C_{OH} = f_{HO} \cdot C_{O}$$

 $\begin{array}{c|c} C_{H} & N\\ Effective dynamic load rating\\ f_{H} & -\\ Dynamic hardness factor\\ C & N\\ Basic dynamic load rating\\ C_{0H} & N\\ Effective static load rating\\ f_{H0} & -\\ Static hardness factor\\ C_{0} & N\\ Basic static load rating.\\ \end{array}$

 f_{H0} , f_{H} = hardness factor HV, HRC = surface hardness

LFS..-RB, W..-X90
 W..-X46

Figure 3 Static and dynamic hardness factors for lower hardness of raceways


Lubrication

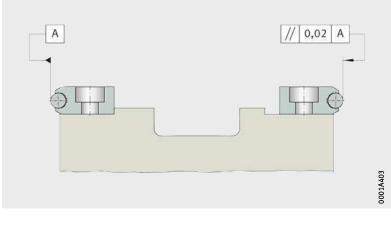
Lubrication of guideway raceways	The guideway raceways must be lubricated (even before first use). Lubrication can be carried out by means of lubrication and wiper units.
	These units are already integrated in the compact carriage LFKLSF. For carriages LFLSF and LFCL, the lubrication and wiper unit AB, see page 109, is available as an accessory.
	The guideway raceway is lubricated by an oil-soaked felt insert. Oil can be fed to the felt inserts via lubrication nipples in the end faces. At delivery, the felt inserts are already soaked with oil (H1 approval for the food industry), where relubrication is to be carried out an oil of viscosity $v = 460 \text{ mm}^2/\text{s}$ is recommended.
Lubrication intervals	The lubrication intervals for guideway raceways are dependent on the environmental influences. The cleaner the environment, the smaller the quantity of lubricant required. The time and quantity can only be determined precisely under operating conditions since it is not possible to determine all the influences by calculation. An observation period of adequate length must be allowed.
!	Fretting corrosion is a consequence of inadequate lubrication and is visible as a reddish discolouration of the mating track or outer ring. Inadequate lubrication can lead to permanent system damage and therefore to failure. It must be ensured that the lubrication intervals are reduced accordingly in order to prevent fretting corrosion. In general, a thin film of oil should always be present on the shaft.
Lubrication of track rollers	At delivery, track rollers LFR have an initial greasing of a high quality lithium soap grease. From LFR5204-16, the inner ring has a relubrication hole. Track rollers of smaller diameters are lubricated for life.

Further information on lubrication

Further information can be found in Catalogue HR 1, Rolling Bearings, in the chapter Lubrication.

Figure 1 Lubrication of guideway raceways

Design of bearing arrangements



Requirements for the adjacent construction

The running accuracy of the linear guidance system is essentially dependent on the straightness, accuracy and rigidity of the mounting surfaces.

The higher the requirements for accuracy and smooth running of a track roller guidance system, the more attention must be paid to the geometrical and positional accuracy of the adjacent construction. The adjacent surfaces should be flat and have parallel faces.

For two guideways, we recommend a parallelism according to *Figure 1*.

Figure 1 Parallelism of guideways

Shaft ci	reep
----------	------

eep	Under unfavourable conditions, shaft creep of a few millimetres may
	occur in isolated cases. This creep may occur mainly in applications
	with high accelerations in conjunction with high alternating loads
	and guideways that are not completely supported. It may also be
	caused by an adjacent construction that is too soft.
	In such cases, shaft creep can be prevented by the use of end

In such cases, shaft creep can be prevented by the use of end plates ANS.LFS, see dimension table page 115. They can be supplied already mounted.

Displacement force The displacement force is dependent on the preload, the lubrication and the particular application. It is therefore not possible to make generally valid statements.

Design of bearing arrangements

Location of carriages and guideways

Track roller guidance systems

in accordance with customer

specifications

Į.

If lateral loads are present, it is recommended that the guideways and carriages should be located against locating surfaces. In the case of guideways comprising multiple sections joined together, it is recommended that the guideways should be aligned by means of the shaft. If necessary, the shafts should be located on the adjacent construction by means of dowels.

If two guideways are arranged in parallel, the first guideway should be clamped against a stop, *Figure 1*, page 21. The second guideway should then be aligned accordingly. Any gaps between the guideway and the adjacent construction should be filled with synthetic resin.

The INA track roller guidance systems with curved guideway elements can be used to achieve an extremely wide variety of applications, *Figure 2* and *Figure 3*, page 23.

If the arrangement required cannot be represented using the standard ordering designation, a customer drawing must be submitted with the enquiry.

For arrangements with curved guideway elements, it is recommended that the guideway connectors VBS should be used at the joints, see page 114. This gives considerably easier mounting.

Standard oval tracks are always supplied with guideway connectors VBS, see page 102.

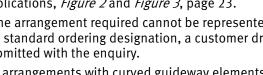
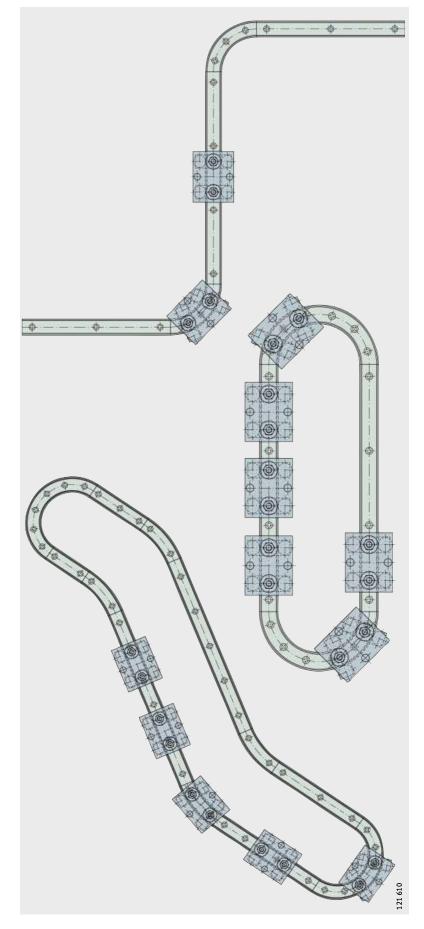
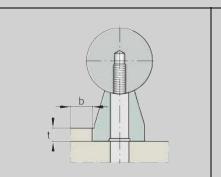
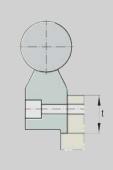
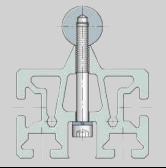



Figure 2 Arrangement according to customer requirements

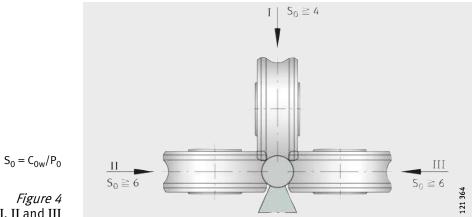



Figure 3 Closed and open applications with guidance systems including curved guideway elements


Possible combinations of profiled track rollers with guideways		Guideways			
	Shaft	TSNW, TSNWG4 (-0	G5)		
	diameter	Fixing screw	Load case, Fi	igure 4	
			Ι	II	III
	mm				
	12	DIN ISO 4762		-	-
		DIN 7984			
	16	DIN ISO 4762		-	-
		DIN 7984		-	-
	20	DIN ISO 4762		-	-
		DIN 7984		-	-
	25	DIN ISO 4762			
		DIN 7984			
	30	DIN ISO 4762		-	-
		DIN 7984			
	40	DIN ISO 4762			
		DIN 7984			
	50	DIN ISO 4762			
		DIN 7984			


 $\label{eq:combination} \begin{array}{l} \hline & \mbox{combination possible if the rail is located using the stated screw} \\ \hline & \mbox{combination possible} \\ \hline & \mbox{combination possible if } t \leq t_{max} \mbox{ and } b \leq b_{max} \\ - \mbox{ please contact us} \end{array}$

¹⁾ With AB.W: $t_{max} = 2,5$.


TSUW	TSUW		TSSW			TSMW					
t _{max}	b _{max}	Load ca	se, <i>Figul</i>	re 4	t _{max} Load case, <i>Figure 4</i>		Load case, <i>Figure 4</i>				
		Ι	II	III		Ι	II	III	Ι	II	III
mm	mm				mm ¹⁾						
5	5	•		O ¹⁾	_	_	_	_	-	-	-
-	-	•	-	-	-	-	-	-	-	-	-
-	-	•	-	-	-	•	-	-	•	-	-
10	12	•	•	0	36	•	•	•	•	•	•
12	16	•	•	0	42	•	•	•	•	•	•
10	-	•	•	0	50	•	•	•	-	-	-
13	-	•	•	0	70	•	•	•	-	-	-

For the combination, take account of:

 \blacksquare the static load safety factor S_0 , see page 17

■ the load cases, *Figure 4*

a shaft hardness of 670 HV.

Figure 4 Load cases I, II and III

ļ

Mounting

Delivered condition	Carriages are delivered with the track rollers fitted. All the bolts are tightened to the required tightening torque.
Carriages	 For carriages, this gives: hollow section carriage LFCL; clearance-free, with mounting of accessories as necessary compact carriage LFKLSF; clearance-free, with mounting of lubrication and wiper unit as necessary non-locating bearing carriage LFLLSF; clearance-free, with mounting of accessories as necessary open carriage LFLSF; clearance-free, with mounting of accessories as necessary bogie carriage LFDLSF (-B); LFDLSF clearance-free, with mounting of accessories as necessary. In the case of LFDLB, the clearance must be set by means of eccentrics.
Mounting of guidance system with one guideway	 Mounting of guidance system with one guideway: Place the guideway on the adjacent construction and screw mount finger tight. Align the guideway; if necessary, clamp the shaft against the locating edge and screw mount firmly, observing the tightening torques. Clearance-free carriages: slide the carriage onto the guideway. Carriages with adjustable clearance: if lateral load is present,

- Carriages with adjustable clearance: if lateral load is present, ensure that the principal load is supported by the concentric bolts.
- Position and screw mount the adjacent construction.

Mounting of guidance system with two guideways

Mounting of guidance system with two guideways:

- Position the first guideway, clamp it against the locating edge and tighten the screws.
- Position the second guideway and screw mount finger tight.
- Slide the carriage onto the guideway, set the clearance as necessary, *Figure 2*, page 28.
- Position the adjacent construction, align the carriage and screw mount firmly; observe the tightening torques M_A, see table, page 29.
- Align the second guideway with the aid of the table, move the table several times during this operation.
- Tighten the fixing screws in the guideway; tightening torques M_A, see table, page 29.

Where necessary, form fit can be achieved between the guideways and adjacent construction by means of synthetic resin or strips.

Mounting of curved guideway elements and oval tracks:

- Assemble the curved guideway elements or oval tracks.
- Position the assembled elements precisely on the adjacent construction and fix in place by means of clamps.
- Transfer the hole pattern for the fixing holes to the adjacent construction.
- Remove the elements and make the fixing holes in the adjacent construction.
- Position the elements on the adjacent construction again and tighten the fixing screws; observe the tightening torques M_A, see table, page 29.

Slide the clearance-free carriage LFDL..-SF onto the guideway.

The bogie carriage LFDL..-SF cannot be mounted on closed ring

No setting of clearance is required, *Figure 1*, page 28.

Mounting of bogie carriage

Mounting of curved guideway

elements and oval tracks

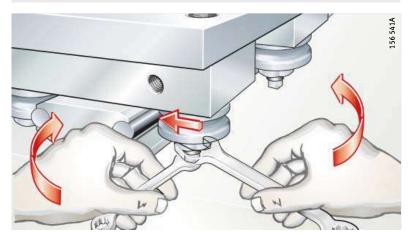
•	

İ

Carriages with adjustable clearance

systems, in this case use the clearance-free bogie carriage LFDL..-B. Slide the carriage LFDL..-B onto the guideway and set in position without load. Rotate the eccentric bolts using an open-end wrench or ring wrench so that the track rollers are set against the raceway, observing the direction of rotation, *Figure 2*, page 28. Tighten the hexagon nuts to the tightening torque M_A ; tightening torques, see table, page 29.

The track rollers must be easily movable and clearance-free. If they are set in place too firmly, this will generate preload that reduces the life of the guidance system.


Mounting

Inspection Check the adjustment. The guidance system is correctly adjusted if, when the carriages are moved, all the track rollers rotate and the carriages can be moved easily.

The concentric bolts are tightened to the necessary tightening torque, the eccentric bolts are tightened finger tight. When setting the preload, these must be tightened to the tightening torque M_A , see table Tightening torques for track roller bolts, page 29.

Figure 1 Clearance-free carriage LFDL..-SF

Figure 2 Carriage with adjustable clearance LFDL..-B

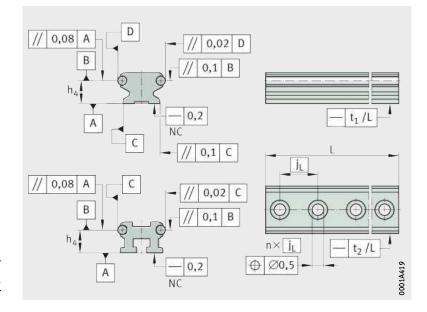
Tightening torques for track roller bolts	Track roller, profiled track roller	Bolt	Tightening torque M _A		
			Standard (-2Z)	RB (-2RSR)	
			Nm	Nm	
	LFR50/5-4	M4	2,5	2,5	
	LFR50/5-6	M4	2,5	2,5	
	LFR50/8-6	M8	15	12	
	LFR5201-10	M10	40	23	
	LFR5301-10	M10	40	23	
	LFR5302-10	M12	70	39	
	LFR5201-12	M10	40	23	
	LFR5204-16	M16×1,5	100	75	
	LFR5206-20	M20×1,5	200	100	
	LFR5206-25	M20×1,5	200	100	
	LFR5207-30	M24×1,5	300	150	
	LFR5208-40	M30×1,5	600	310	
	LFR5308-50	M30×1,5	800	410	

Tightening torques
for screws in carriage
according to DIN ISO 4762-8.8

Screw	Tightening torque M _A Nm
M5	5,8
M6	9,9
M8	24
M10	48
M12	83

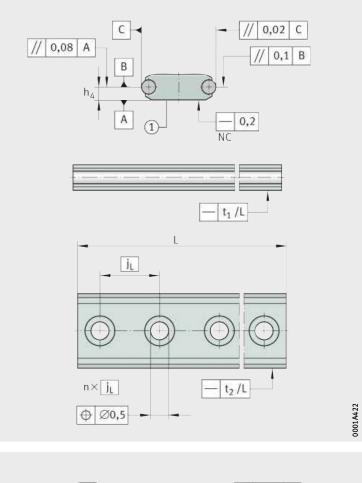
Screw	Tightening torque M _A
	Nm
M5	5,8
M6	9,9
M8	24
M10	48
M12	83

Accuracy

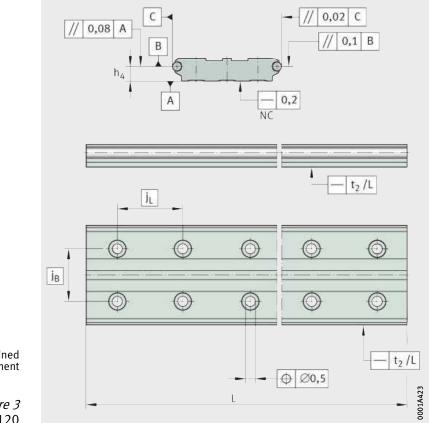

Accuracy of guideways LFS

Data on the straightness, parallelism (differential measurement), length and positional tolerances of guideways are given in the following tables and figures, *Figure 1* to *Figure 5*, page 32. The guideways are precision straightened and the tolerances are better than DIN EN 12020.

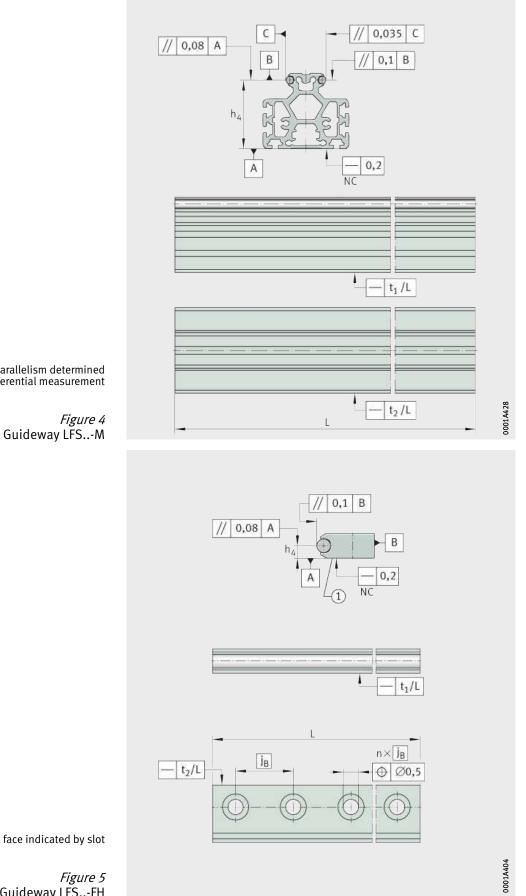
Length tolerance Length Tolerance L mm mm ±2 Single-piece guideways $L\,{<}\,1\,000$ $1\,000 \le L < 2\,000$ ±3 $2\,000 \le L < 4\,000$ ± 4 $4\,000 \leq L$ ±5 Total length L Multi-piece guideways ±0,1%


Straightness tolerance for guideways

Length of guideway	Tolerance				
	t ₁ (contact face)	t ₂ (lateral)			
	mm	mm			
L < 1000	0,5	0,2			
$1000 \le L < 2000$	1	0,3			
$2000 \le L < 3000$	1,5	0,4			
$3000 \le L < 4000$	2	0,5			
$4000 \le L < 5000$	2,5	0,6			
$5000 \le L < 6000$	3	0,7			
$6000 \le L < 7000$	3,5	0,8			
$7000 \le L < 8000$	4	0,9			


Figure 1 Tolerances for guideways LFS, LFS..-C, LFS..-NZZ, LFSR..-ST

1 Contact face indicated by slot


Figure 2 Guideway LFS..-F

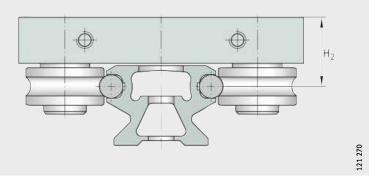
Parallelism determined by differential measurement

Figure 3 Guideway LFS120

Accuracy

Parallelism determined by differential measurement

1 Contact face indicated by slot


Figure 5 Guideway LFS..-FH

Tolerances for $\rm H_2$ and $\rm h_4$

Tolerances for ${\rm H_2}$ and ${\rm h_4},$ see table, Figure 6 and Figure 7.

Guideway	Tolerance for			
	H ₂	h ₄		
	mm	mm		
LFS20		-0,1		
LFS25		-0,1		
LFS25-M		±0,25		
LFS32		+0,2		
LFS32-C		+0,2		
LFS32-N		+0,2		
LFS32-F		+0,1		
LFS32-M		±0,25		
LFS32-FH		+0,1		
LFS42-C	+0,3	+0,2		
LFS42-F		+0,1		
LFS52		+0,2		
LFS52-C		+0,2		
LFS52-NZZ		+0,2		
LFS52-F		+0,1		
LFS52-M		+0,5		
LFS52-FH		+0,1		
LFS86-C	+0,25			
LFS120	+0,2			

Tolerance for $H_2 = +0,3 \text{ mm}$

Figure 6 Reference dimension for accuracy, dimension H₂

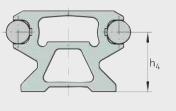


Figure 7 Reference dimension for accuracy, dimension h₄

121 345

Ordering example, ordering designation

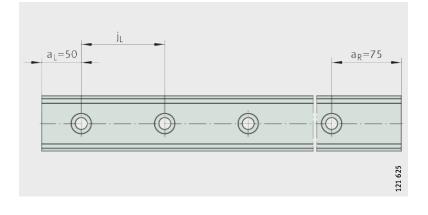
Ready-to-fit systemsThe elements of the track roller guidance systems (such as
the carriage, guideway) must be ordered separately.
Carriages should be regarded as a unit, including the track rollers
and bolts.

Carriages and guideways can be used in any combination and can be ordered independently of each other.

Ordering example Track roller guidance system of corrosion-resistant design with open carriage LFL52-E-SF, *Figure 1* and *Figure 2*.

Carriage	Carriage	LFL
	Size	52-E
	Clearance-free	SF
	Corrosion-resistant	RB

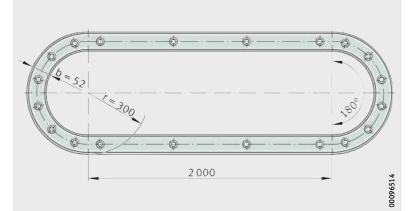
Ordering designation LFL52-E-SF-RB


Figure 1 Open carriage LFL52-E-SF

Guideway		ay LFS52-CE, length 1 500 mm, a _L = 50 mm, resistant design, <i>Figure 2</i> :
	Guideways	LFS
	Width of guideway	52 mm
	Length of guideway l	1 500 mm
	Design	CE
	Corrosion-resistant	RB
	Spacing a _L	50 mm
	Spacing a _R	75 mm

Ordering designation

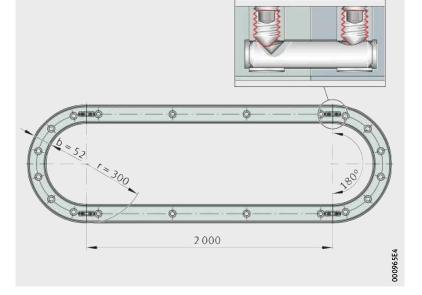
LFS52×1500-CE-RB-50/75


Figure 2 Guideway LFS52-CE

Ordering example, ordering designation

Closed oval tracks

ack with two 180° arcs	Guideways	LFS
	Width of guideways b	52 mm
	Length of straight guideways	2 000 mm
	Closed oval track	OV
	Radius of arc r	300 mm
Ordering designation	Without guideway connectors 1×LFS52×2000-OV-300	VBS, <i>Figure</i>

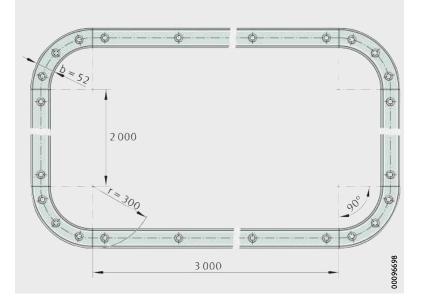

With guideway connectors VBS, Figure 4 1×LFS52×2000-OV-300-VBS

3

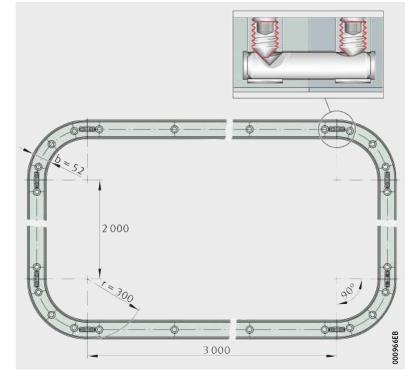
b = width of guideways r = radius of arc

Figure 3 Closed oval track with 180° arcs LFS52×2000-0V-300

b = width of guideways r = radius of arc


Figure 4 Closed oval track with 180° arcs and guideway connectors VBS LFS52×2000-OV-300-VBS

Oval track with four 90° arcs


rack with four 90° arcs	Guideways Width of guideways b Length of straight guideways	LFS 52 mm
	1st straight guideway	2 000 mm
	2nd straight guideway	3 000 mm
	Closed oval track	OV
	Radius of arc r	300 mm
Ordering designation	Without guideway connector 1×LFS52×2000×3000-OV-	
	With guidoway connectors V	BS Figuro 6

b = width of guideways r = radius of arc

Figure 5 Closed oval track with 90° arcs LFS52×2000×3000-0V-300

b = width of guideways r = radius of arc

Figure 6 Closed oval track with 90° arcs and guideway connectors VBS LFS52×2000×3000-0V-300-VBS

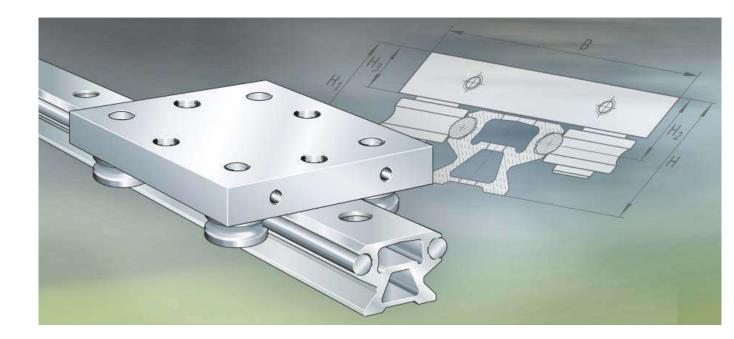
Ordering example, ordering designation

Individual components	In order to achieve versatile user designs, it is also possible to order individual components of the ready-to-fit systems;
	example, <i>Figure 7</i> .

Track roller	Series Size Sealing Corrosion-resistant	LFR 50/8-6 2RS RB, <i>Figure 7</i>
Ordering designation	LFR50/8-6-2RS-RB	
Bolt	Series Concentric Size Corrosion-resistant	LF Z 8 RB, <i>Figure 7</i>
Ordering designation	LFZ8-RB	
Cap wiper	Series Size	AB.LFR 50/8, <i>Figure 7</i>
Ordering designation	AB.LFR50/8	

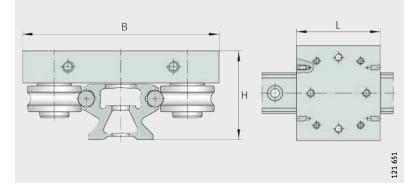
1 2 -----3 00099961

① Track roller (2) Bolt, concentric 3 Cap wiper


Figure 7 Track roller, bolt, wiper

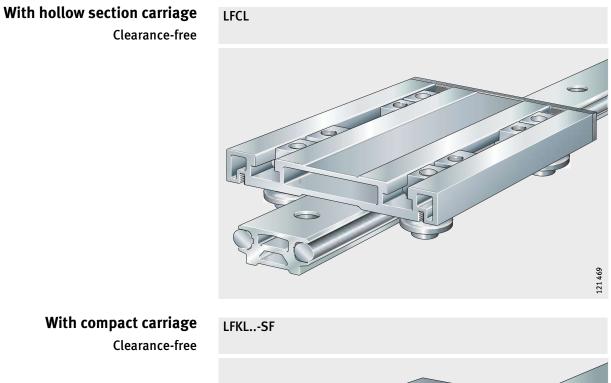
Operating limits

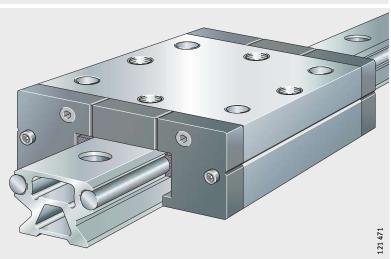
Operating temperature	Track roller guidance systems can be used at a temperature from -20 °C to +80 °C. For applications below -20 °C and above +80 °C, please contact us.
	The area of application is restricted by the lubricant, the plastics used and the composite materials.
Velocities	The maximum possible speed of track roller guidance systems is 10 m/s. Higher speeds may be possible by agreement.
Acceleration	When using track roller guidance systems, accelerations of up to 50 m/s ² can be achieved.


Track roller guidance systems

With hollow section carriage With compact carriage With open carriage With non-locating bearing carriage With bogie carriage

Matrix for preselection of track roller guidance systems	Track roller guidance systems with		dth o	f gui	dewa	ays		Corrosion- resistant
		20	25	32	42	52	86	
	Hollow section carriage LFCL	-	•	-	•	-	•	
	Compact carriage LFKLSF	•	•	•	_	•	-	
	Open carriage LFLSF	•	_	•	_	•	-	
	Non-locating bearing carriage LFLLSF	-	-	•	-	•	-	
	Bogie carriage LFDLSF LFDLB	-	-	•	-	•	-	
	available sizespossible							


¹⁾ The guideway LFS..-M can only be combined with carriages with adjustable clearance. If carriages LFCL and LFKL..-SF are to be used, please contact us in advance.


Special features of guidance systems	Sizes	Basic dimensions of guidance systems, dimensions, <i>Figure 1</i>									Description
		LFS (-C, -CE, -CEE, -E, -EE, -NZZ, -OV), LFSRST		LFSF (-FE)			LFSM ¹⁾				
		Н	В	L	Н	В	L	Н	В	L	see page
 economical low mass high moment load carrying capacity M_X 	25 42 86	32,1 39 59	80 116 190	110 150 235	- 33,9 -	80 116 190	110 150 235	63,1 - -	80 116 190	110 150 235	46
closed series protected track rollers integrated lubrication unit	20 25 32 52 52-E 52-EE	22 25 35,5 54,3 60,4 60,4	56 65 86 13 145 155	69 85 112 136 186 205	- - 25,5 38,2 44,3 44,3	56 65 86 130 145 155	69 85 112 136 186 205	- 56 - 118,9 125 125	56 65 86 130 145 155	69 85 112 136 186 205	48
very robust simple construction	20 32 52 52-E	22 35,5 54,3 60,4	55 80 120 135	50 90 100 150	- 25,5 38,2 44,3	55 80 120 135	50 90 100 150	- 81,5 118,9 125	55 80 120 135	50 90 100 150	50
 locating and non-locating bearing arrangement compensation of skewing in the adjacent construction up to ±1 mm 	32 52	35,5 54,3	80 120	90 100	25,5 38,2	80 120	90 100	81,5 118,9	80 120	90 100	52
oval track guidance systems for unlimited stroke length	32-B 32-SF 52-B 52-SF	44,2 44,2 66,1 60,1	80 80 120 120	100 100 150 150	34,2 34,2 50 50	80 80 120 120	100 100 150 150	90,2 90,2 130,7 130,7	80 80 120 120	100 100 150 150	54

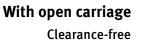
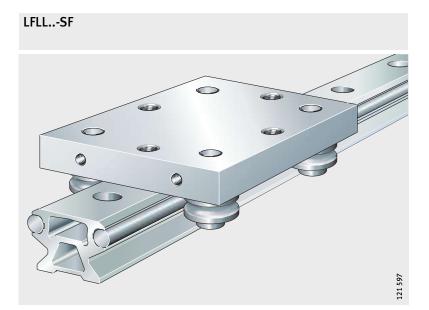


Figure 1 Dimensions H, B, L

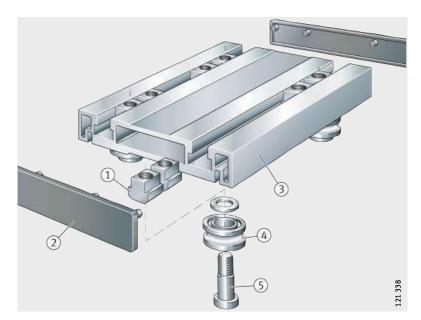

Product overview Track roller guidance systems

With non-locating bearing carriage Clearance-free

With bogie carriage Concentric and eccentric bolts, adjustable clearance

Concentric bolts clearance-free

Track roller guidance systems


Features

Track roller guidance system with hollow section carriage

ITES Track roller guidance systems are available with a hollow section carriage, compact carriage, open carriage, non-locating bearing carriage or bogie carriage.

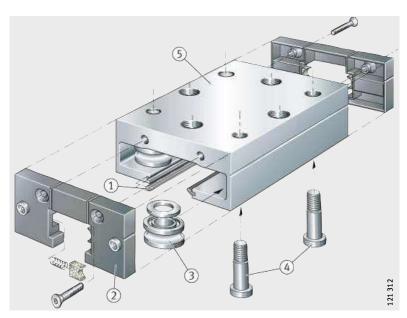
The economical series LFCL is characterised in particular by its low mass and its high moment load carrying capacity M_x . In addition, more individual design of the adjacent construction is possible by means of four T-bolts that can be moved in a longitudinal direction.

A carriage comprises a carriage plate made from anodised aluminium, four concentric bolts, four track rollers, two end covers for the hollow sections and four T-nuts that can be used for the adjacent construction, *Figure 1*. The track rollers and end covers are already fitted.

T-nut
 End cover
 Carriage plate
 Track roller
 Concentric bolt

Figure 1 Hollow section carriage

Preload and clearance	The carriages run clearance-free on all INA guideways, see page 42, and can be combined with all guideways of the relevant size, but not with the curved guideway elements LFSR. Due to the highly accurate guideways, it is not necessary to set the clearance.
Sealing and lubrication	The track rollers have gap seals on both sides, are greased for life and are therefore maintenance-free. The raceways can be lubricated using cap wipers AB.LFR. Their fixing screws pass into the screw mounting channels of the carriage plate.
Corrosion-resistant design	All steel parts, the inner and outer rings of the track rollers and the bolts, washers and nuts are made from corrosion-resistant steel. The rolling elements are protected against corrosion by the grease. Corrosion-resistant designs have the suffix RB.
Further information	 Further information is given on the following pages: dimension table, see page 56 track rollers, see page 68 guideways, see page 76


accessories, see page 106.

Track roller guidance systems

Track roller guidance system with compact carriage

The closed compact carriage LFKL..-SF gives a simple means of achieving track roller guidance systems for operation in contaminated environments. The track rollers are protected against contamination by the closed design. It has two integrated lubrication units for lubrication of the raceways.

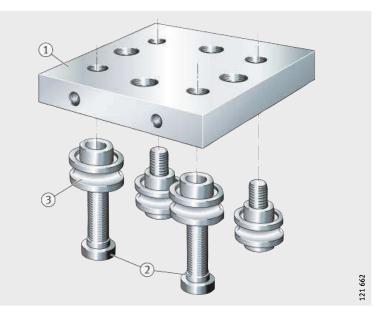
A carriage comprises a saddle plate made from anodised, profiled aluminium, four concentric bolts, four track rollers, two sealing strips and two lubrication and wiper units, *Figure 2*. The track rollers are already fitted, the sealing strips as well as the lubrication and wiper units are included loose in the delivery.

Sealing strip
 Lubrication and wiper unit
 Track roller
 Concentric bolt
 Saddle plate

Figure 2 Compact carriage

Preload and clearance	The carriages run clearance-free on all INA guideways, see page 42, and can be combined with all guideways of the relevant size, but not with the curved guideway elements LFSR. Due to the highly accurate guideways, it is not necessary to set the clearance.
Sealing and lubrication	The track rollers have gap seals on both sides, are greased for life and are therefore maintenance-free. For lubrication of the raceways, the lubrication and wiper units have oil-soaked felt inserts that can be replenished with oil via lubrication nipples. In combination with the sealing strips (gap seals), these units protect the compact carriage on all sides against contamination.
Corrosion-resistant design	All steel parts, the inner and outer rings of the track rollers and the bolts, washers and nuts are made from corrosion-resistant steel. The rolling elements are protected against corrosion by the grease. Corrosion-resistant designs have the suffix RB.
Further information	 Further information is given on the following pages: dimension table, see page 58 track rollers, see page 68 guideways, see page 76

accessories, see page 106.



Track roller guidance systems

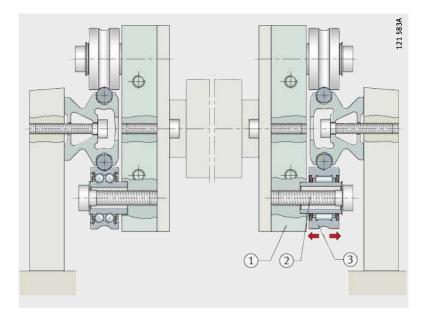
Track roller guidance system with open carriage

The robust, open carriage LFL..-SF is suitable where high performance linear guidance systems of a simple construction are required.

A carriage comprises a carriage plate made from anodised aluminium, four screws and four track rollers, *Figure 3*. The track rollers are already fitted.

Carriage plate
 Screws
 Track roller

Figure 3 Open carriage


Preload and clearance	The carriages run clearance-free on all INA guideways, see page 42, and can be combined with all guideways of the relevant size, but not with the curved guideway elements LFSR. Due to the highly accurate guideways, it is not necessary to set the clearance.
Sealing and lubrication	The track rollers have gap seals on both sides, are greased for life and are therefore maintenance-free. The raceways can be lubricated by means of lubrication and wiper units AB, see page 106. Their oil-soaked felt inserts can be replen- ished with oil via lubrication nipples. In combination with side plates ABAL, these units seal the end faces and longitudinal sides of the open carriage, see page 107.
Corrosion-resistant design	All steel parts, the inner and outer rings of the track rollers and the screws, washers and nuts are made from corrosion-resistant steel. The rolling elements are protected against corrosion by the grease. Corrosion-resistant designs have the suffix RB.
Further information	 Further information is given on the following pages: dimension table, see page 60 track rollers, see page 68 guideways, see page 76 accessories, see page 106.

Track roller guidance system with non-locating bearing carriage

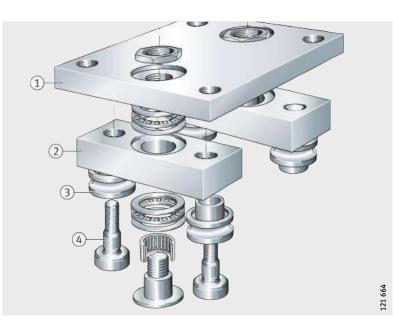
Non-locating bearing carriages LFLL..-SF are robust, ready-to-fit linear guidance systems that are used exclusively in locating or non-locating bearing applications with two parallel guideway systems. The track rollers can be axially displaced. In this way, it is possible to compensate inaccuracies of ± 1 mm in relation to the spacing of the guideways.

A carriage comprises a carriage plate made from anodised aluminium, four screws and four non-locating bearing track rollers, *Figure 4*. The track rollers are already fitted.

Carriage plate
 Screw
 Non-locating bearing track roller

Figure 4 Non-locating bearing carriage

Preload and clearance	The carriages run clearance-free on all INA guideways, see page 42, and can be combined with all guideways of the relevant size, but not with the curved guideway elements LFSR. Due to the highly accurate guideways, it is not necessary to set the clearance.
Sealing and lubrication	The track rollers have gap seals on both sides, are greased for life and are therefore maintenance-free. The contact zone between the raceways and track rollers must be lubricated via the shaft.
Corrosion-resistant design	All steel parts, the inner and outer rings of the track rollers and the screws, washers and nuts are made from corrosion-resistant steel. The rolling elements are protected against corrosion by the grease. Corrosion-resistant designs have the suffix RB (available by agreement only). Non-locating bearing carriages must never be used on their own but only ever in combination with locating bearing carriages.
Further information	The track rollers can support loads in a radial direction only. Further information is given on the following pages:
	 dimension table, see page 62 track rollers, see page 68 guideways, see page 76 accessories, see page 106.



Track roller guidance systems

Track roller guidance system with bogie carriage

Bogie carriages LFDL..-B and LFDL..-SF can be used in combination with curved guideway elements LFSR..-ST to achieve almost any variant of oval and circular track guidance systems. The straight guideway elements are precisely matched to the arc.

The carriages LFDL..-B and LFDL..-SF comprise a steel carriage plate, two aluminium swivel brackets (supported axially and radially by rolling bearings). In the case of LFDL..-B, the preload of the four profiled track rollers can be set by means of two concentric and two eccentric bolts. In the case of LFDL..-SF, the preload is already preset to the optimum value by means of four concentric bolts, *Figure 5*. LFDL..-SF cannot be mounted on closed curved guideway systems.

Carriage plate
 Bracket
 Track roller
 Concentric bolt

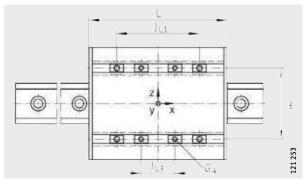

Į.

Figure 5 Bogie carriage

Sealing and lubrication	The track rollers have gap seals on both sides, are greased for life and are therefore maintenance-free.
	The contact zone between the raceways and track rollers must be lubricated via the shaft.
Corrosion-resistant design	All steel parts, the inner and outer rings of the track rollers and the bolts, washers and nuts are made from corrosion-resistant steel. The rolling elements are protected against corrosion by the grease.
	Corrosion-resistant designs have the suffix RB (available by agreement only).
!	The adjustable carriage LFDLB must be used in combination with a 360° guideway.
Further information	Further information is given on the following pages:
	dimension table, see page 64
	track rollers, see page 68
	guideways, see page 76

accessories, see page 106.

Track roller guidance system with hollow section carriage

LFCL with LFS (-C, -CE, -CEE, -E, -E, -NZZ, -M, -F) View rotated 90°

Dimension table · Dimensions in mm										
Carriage ¹⁾	Mass	Track roller ²⁾	For shaft diameter	Dimensions			Mounting dimensions			
	m ≈ kg			H ₁	В	L	J _B	J _{B1}	J _{B2}	
LFCL25	0,44	LFR50/8-6-2Z	6	30,5	80	110	47	47	69	
LFCL42	1	LFR5201-10-2Z	10	38,1	116	150	73	73	98,5	
LFCL86 ⁴⁾	2,2	LFR5301-10-2Z	10	48,4	190	235	124	124	151,5	

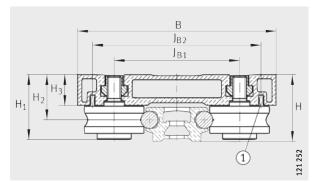
Ordering designations

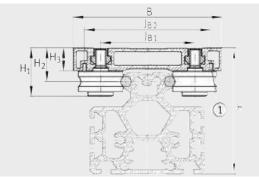
Corrosion-resistant design: LFCL..-RB, LFS..-RB with LFR..-2RSR-RB. Guideways without holes: LFS..-OL.

1) Threaded slot for screws M3.

¹⁾ The design of the hollow sections is dependent on the size.

²⁾ For ordering of replacement parts, please contact us.

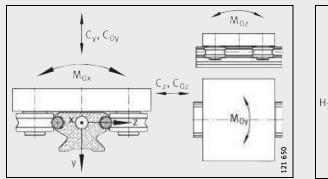

³⁾ The guideway LFS..-M can only be combined with carriages with adjustable clearance. If SF and LFCL carriages are to be used, please contact us in advance.

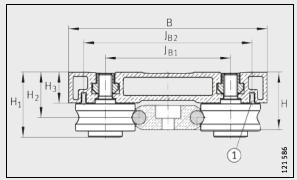

⁴⁾ Additional T-slot in the centre of the carriage.

Basic	load rati	ngs									
Carria	ge	Guideway	Track roller ²⁾	Basic load ratings							
				Cy	C _{0y}	Cz	C _{0z}	M _{0x}	M _{Oy}	M _{0z}	
				Ν	Ν	Ν	Ν	Nm	Nm	Nm	
LFCL2	5	LFS25	LFR50/8-6-2Z	4 600	2 400	7 320	4 500	25	120	65	
LFCL4	2	LFS42	LFR5201-10-2Z	10 200	5 480	16 900	10 000	85	425	230	
LFCL8	6	LFS86	LFR5301-10-2Z	17 800	8 850	28 400	15 500	335	1 1 90	680	

 $^{1)}\,$ Basic load ratings in combination with LFS..-RB: see page 18.

²⁾ For ordering of replacement parts, please contact us.

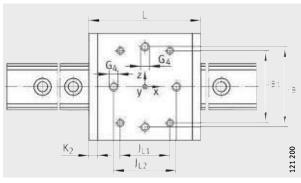



121 585

LFCL with LFS (-C, -CE, -CEE, -E, -EE, -N, -NZZ)

LFCL with LFS..-M³⁾

	Total height H of carriage and	d guideway							
J _{L1}	J _{L3}		H ₂ H ₃		G ₄	Maximum screw depth for G ₄	LFS (-C, -CE, -CEE, -E, -EE, -N, -NZZ)	LFS-F	LFSM ³⁾
	min.	max.	+0,3						
58	13	32	21,5	15,4	M6	10	32,1	-	63,1
85	15	55	26,4	18	M8	12	39	33,9	-
155	18	119	33,9	23,4	M10	14	59	-	-



Load directions

LFCL with LFS..-F

Track roller guidance system with compact carriage

LFKL-SF with LFS (-C, -CE, -CEE, -E, -EE, -NZZ, -M, -F, -FE) View rotated 90°

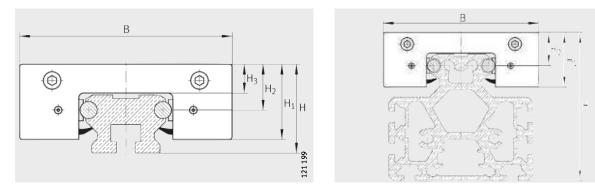
Dimension table · Di	Dimension table · Dimensions in mm										
Carriage	Mass	Track roller ¹⁾	For shaft diameter	Dimensio	ns		Mounting dimensions				
	m			H ₁	В	L	J _B	J _{B1}	К2		
	\approx kg						±0,2				
LFKL20-SF	0,2	LFR50/5-4-2Z	4	20,5	56	69	39	34	5		
LFKL25-SF	0,3	LFR50/5-6-2Z	6	23,5	65	85	50	40	5		
LFKL32-SF	0,7	LFR50/8-6-2Z	6	32	86	112	59	54	7		
LFKL52-SF	1,5	LFR5201-10-2Z	10	46,1	130	136	90	83	10		
LFKL52-E-SF	2,9	LFR5301-10-2Z	10	53,8	145	186	105	90	10		
LFKL52-EE-SF	4,3	LFR5302-10-2Z	10	55	155	205	115	95,2	10		

Ordering designation

Corrosion-resistant design: LFKL..-SF-RB, LFS..-RB with LFR..-2RSR-RB. Guideways without holes: LFS..-OL.

 $^{1)}\,$ For ordering of replacement parts, please contact us.

 $^{2)}$ Tightening torque for track roller bolts, concentric bolts are supplied tightened to M_A.

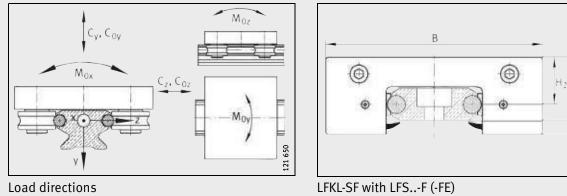

³⁾ The guideway LFS..-M can only be combined with carriages with adjustable clearance. If these are to be used, please contact us in advance.

Dasic toau ratilig	5 /									
Carriage	Guideway	Track roller ²⁾	Basic load ratings							
			Cy	C _{Oy}	Cz	C _{0z}	M _{0x}	M _{Oy}	M _{Oz}	
			Ν	Ν	Ν	Ν	Nm	Nm	Nm	
LFKL20-SF	LFS20	LFR50/5-4-2Z	1 350	870	2 400	1 700	7	28	15	
LFKL25-SF	LFS25	LFR50/5-6-2Z	1 280	820	2 580	1 800	8	40	18	
LFKL32-SF	LFS32	LFR50/8-6-2Z	4 100	2 400	6 600	4 200	30	130	70	
LFKL52-SF	LFS52	LFR5201-10-2Z	10 000	5 200	16 800	10 000	110	290	150	
LFKL52-E-SF	LFS52-E	LFR5301-10-2Z	17 800	8 900	28 400	15 500	180	800	460	
LFKL52-EE-SF	LFS52-EE	LFR5302-10-2Z	20 000	10 000	32 400	18 200	215	1 100	620	

Basic load ratings¹⁾

¹⁾ Basic load ratings in combination with LFS..-RB: see page 18.

²⁾ For ordering of replacement parts, please contact us.

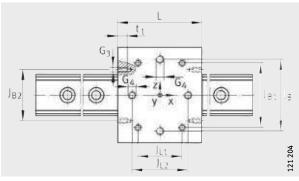


LFKL-SF with LFS (-C, -CE, -CEE, -E, -EE, -NZZ)

LFKL with LFS..-M³⁾

121 588

		Total height H of carriage an							
J _{L1}	J _{L2}	H ₂	H ₃	G ₄	G ₄ M _{A²⁾}			LFS-F (-FE)	LFS-M ³⁾
					Standard	Corrosion- resistant	-CEE, -E, -EE, -NZZ)		
	±0,2	+0,3			Nm	Nm			
34	49	13	8,7	M5	2,5	2,5	22	-	_
45	60	14,4	9	M5	2,5	2,5	25	-	56
60	70	20,5	14	M8	15	12	35,5	25,5	81,5
60	70	29,2	19,4	M10	40	23	54,3	38,2	118,9
105	110	35,3	24	M10	40	23	60,4	44,3	125
120	140	35,3	24	M12	70	39	60,4	44,3	125


Load directions

Schaeffler Technologies

121 427

1 1

Track roller guidance system with open carriage

LFL-SF with LFS (-C, -CE, -CEE, -E, -EE, -NZZ, -M, -F, -FE) View rotated 90°

Dimension table · Dimensions in mm											
Carriage	Mass	Track roller ¹⁾	For shaft diameter	Dimensions			Mounting dimensions				
	m			H ₁	В	L	J _B	J _{B1}	J _{B2}	J _{L1}	J _{L2}
	\approx kg						±0,2				±0,2
LFL20-SF	0,16	LFR50/5-4-2Z	4	20,5	55	50	40	34	-	24	38
LFL32-SF	0,4	LFRI50/8-6-2Z	6	30	80	90	59	54	56	60	70
LFL52-SF	1	LFRI5201-10-2Z	10	43,2	120	100	90	83,2	65	60	70
LFL52-E-SF	1,9	LFR5301-10-2Z	10	53,8	135	150	105	90	65	105	110

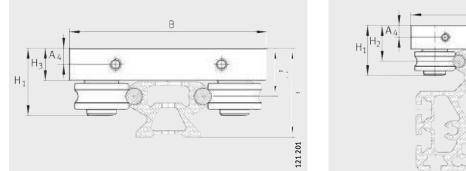
Ordering designation

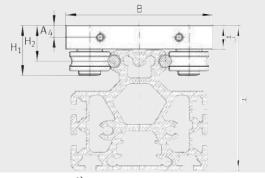
Corrosion-resistant design: LFL..-SF-RB, LFS..-RB with LFR..-2RSR-RB. Guideways without holes: LFS..-OL.

Corrosion-resistant design available by agreement.

1) For ordering of replacement parts, please contact us.

 $^{2)}\,$ Tightening torque for track roller bolts, concentric bolts are supplied tightened to $M_{A}.$


³⁾ The guideway LFS..-M can only be combined with carriages with adjustable clearance. If SF and LFCL carriages are to be used, please contact us in advance.

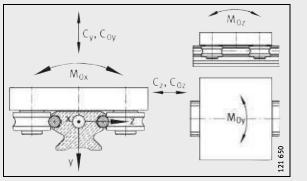

Carriage	Guideway	Track roller ²⁾	Basic load ratings								
		Cy	C _{Oy}	Cz	C _{0z}	M _{0x}	M _{Oy}	M _{Oz}			
			Ν	Ν	Ν	Ν	Nm	Nm	Nm		
LFL20-SF	LFS20	LFR50/5-4-2Z	1 350	870	2 400	1 700	7	20	10		
LFL32-SF	LFS32	LFR50/8-6-2Z	4100	2 400	6 600	4 200	30	130	70		
LFL52-SF	LFS52	LFR5201-10-2Z	10 000	5 200	16800	10 000	110	290	150		
LFL52-E-SF	LFS52-E	LFR5301-10-2Z	17 800	8 900	28 400	15 500	180	800	460		

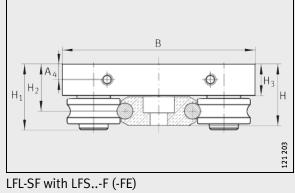
 $^{1)}\,$ Basic load ratings in combination with LFS..-RB: see page 18.

²⁾ For ordering of replacement parts, please contact us.

Basic load ratings¹⁾

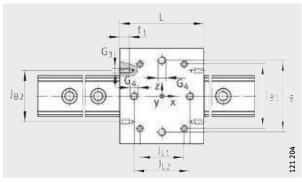
LFL-SF with LFS (-C, -CE, -CEE, -E, -EE, -NZZ)


LFL with LFS..-M³⁾


ŧ		*
N#	0	•

121587

$\Box \Box $	


								Total height H of carriage and		
t ₁	H ₂	H ₃	A ₄	G ₃	G ₄			LFS (-C, -CE, -CEE, -E, -EE,	LFS-F (-FE)	LFS-M ³⁾
						Standard	Corrosion- resistant	-NZZ)		
	+0,3					Nm	Nm			
_	13	9	-	-	M5	2,5	2,5	22	-	-
7	20,5	14	7	M6	M8	15	12	35,5	25,5	81,5
12	29,2	19,5	9,75	M6	M10	40	23	54,3	38,2	118,9
12	35,3	24	12	M6	M10	40	23	60,4	44,3	125

Load directions

Track roller guidance system with non-locating bearing carriage

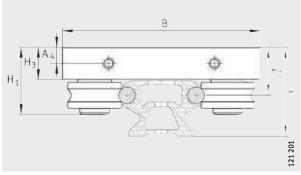
LFLL with LFS (-C, -CE, -CEE, -E, -EE, -NZZ, -M, -F, -FE) View rotated 90°

Dimension table \cdot	Dimension table · Dimensions in mm								
Carriage	Mass	For shaft diameter	Dimensions			Mounting dimensions			
	m		H ₁	В	L	J _B	J _{B1}	J _{B2}	J _{L1}
	\approx kg					±0,2			
LFLL32-SF	0,4	6	32,5	80	90	59	54	56	60
LFLL52-SF	1	10	45	120	100	90	83	65	60

Ordering designation

Guideways without holes: LFS..-OL.

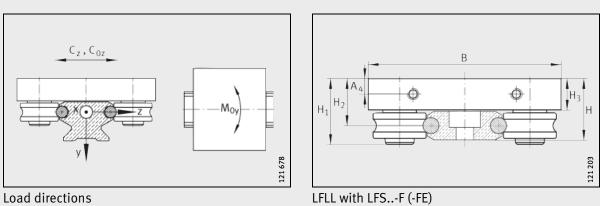
Corrosion-resistant design available by agreement.


¹⁾ $\overline{\text{LFLL32-SF: }\pm 0,5}$ axial displacement capacity.

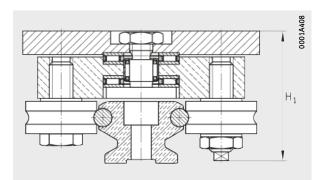
²⁾ LFLL52-SF: ± 1 axial displacement capacity.

Basic load ratings	1)				
Carriage	Guideway	Track roller ²⁾	Basic load rati	ngs	
			Cz	C _{0z}	M _{Oy}
			N	Ν	Nm
LFLL32-SF	LFS32	LFR22/8-6-2RSR-RNA + IR.LFLL32	9 0 0 0	8 000	250
LFLL52-SF	LFS52	LFR2202-10-2RSR-RNA + IR.LFLL52	17 000	19000	550

¹⁾ Basic load ratings in combination with LFS..-RB: see page 18.


²⁾ For ordering of replacement parts, please contact us.

LFLL with LFS (-C, -CE, -CEE, -E, -EE, -NZZ)



							Total height H of carriage and	guideway
J _{L2}	t ₁	H ₂	H ₃	A ₄	G ₃	G ₄	LFS (-C, -CE, -CE -E, -EE, -NZZ)	EE, LFS-F (-FE)
±0,2								
70	7	20,5 ¹⁾	13,75	7	M6	M8	35,5 ¹⁾	25,5 ¹⁾
70	12	29,2 ²⁾	19,5	9,75	M6	M10	54,3 ²⁾	38,2 ²⁾

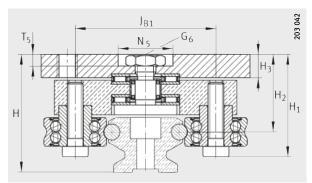
Track roller guidance system with bogie carriage

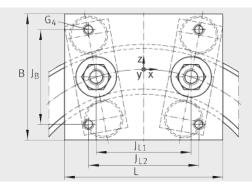
LFDL..-B with LFS (-C, -CE, -CEE, -E, -EE, -NZZ)

Dimension table · Dimensions in mm										
Carriage ¹⁾	Mass	Track roller ²⁾	For shaft diameter	Dimensions	Dimensions			Mounting dimensions		
	m			H ₁	В	L	J _B	J _{B1}		
	\approx kg									
LFDL32-B	1			43	0.0	100	60	54		
LFDL32-SF		LFR50/8-6-2Z	6	37	80	100				
LFDL52-B	2.5	LFR5201-10-2Z	10	65,1	120	150	90	83		
LFDL52-SF	- 2,5	LFK3201-10-22	10	55						

Corrosion-resistant design available by agreement.

 In order to protect the raceways, the carriages can also be fitted with the lubrication and wiper unit AB (special accessory). Please contact us.

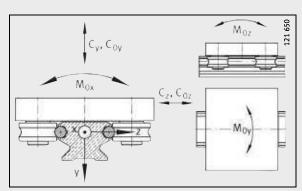

²⁾ For ordering of replacement parts, please contact us.


 $^{3)}$ Tightening torque for track roller bolts, concentric bolts are supplied tightened to MA.

Basic load ratings ¹⁾									
Carriage	Guideway	Track roller ²⁾	Basic load	ratings					
			Cy	C _{Oy}	Cz	C _{0z}	M _{0x}	M _{Oy}	M _{Oz}
			Ν	Ν	Ν	Ν	Nm	Nm	Nm
LFDL32-B	LFS32	LFR50/8-6-2Z	4 100	2 400	6 6 0 0	4 200	30	130	70
LFDL32-SF	LFS32	LFR50/8-6-2Z	4 100		0000	4 200	50	150	
LFDL52-B	LFS52	LFR5201-10-2Z	10 000	5 200	16800	10 000	110	380	200
LFDL52-B-SF	LFS52	LFR5201-10-2Z	10000	5200	10000	10000	110	500	

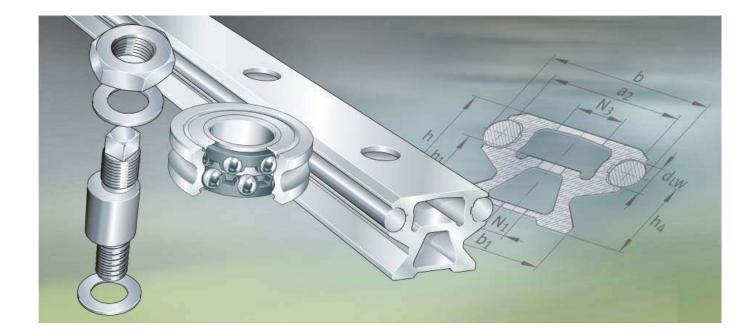
 $^{1)}\,$ Basic load ratings in combination with LFS..-RB: see page 18.

²⁾ For ordering of replacement parts, please contact us.


Top view

€	•
	•

121 246

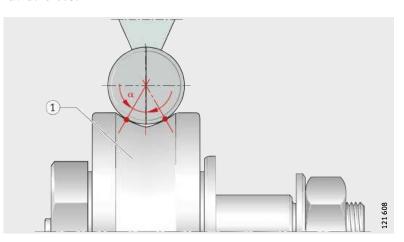

LFDL-SF with LFS (-C, -CE, -CEE, -E, -EE, -NZZ)

										Total height H of carriage and guideway
	J _{L1}	J _{L2}	H ₂	H ₃	T ₅	G ₄	N ₅	G ₆	M _A ³⁾	LFS (-C, -CE, -CEE, -E, -EE, -NZZ)
									Standard	-E, -EE, -NZZ)
			+0,3						Nm	
	60	70	29,2	9	5	M8	21	M8	15	44,2
i										
	76	90	41	11	6	M10	26	M10	40	66,1
		1	1		1	1	1			I

Load directions

Track rollers Bolts Guideways

Product overview Track rollers


203 058

Track rollers

Features Track rollers LFR are double row angular contact ball bearings comprising an outer ring with a gothic arch profile, an inner ring and two ball and cage assemblies with plastic cages. The inner ring and outer ring are made from rolling bearing steel 100Cr6. The special outer ring gives two point contact in the contact zone

The special outer ring gives two point contact in the contact zone with the raceway, *Figure 1*. The contact angle α is a maximum of 30°. The bearings can support axial forces from both directions as well as radial forces.

α = 30°

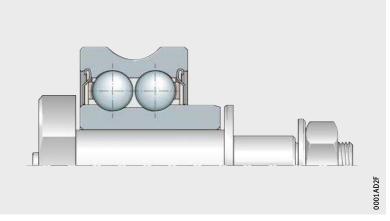

1 Gothic arch raceway groove

Figure 1 Gothic arch, two point contact, contact angle

Track roller with extended inner ring

Track rollers LFRI are double row angular contact ball bearings. They differ from track rollers LFR in that they have an extended inner ring. This allows exact positioning in the adjacent construction. The inner ring is mounted by means of a standard screw (for example ISO 4762) in a fit hole (preferably grade F6). The fixing screw is not included in the scope of delivery. The operating clearance of track rollers with an extended inner ring cannot be set by means of eccentric bolts.

Figure 2 Track roller LFRI with fixing screw

Track rollers

27 coal

Sealing and lubrication

Gap seals on both sides protect the rolling element system against contamination. Bearings with this seal type have the suffix 2Z.

The track rollers are also available on request with contact seals on both sides, suffix 2RS and 2RSR.

The track rollers are greased for life and are therefore maintenance-free. From outside diameter \ge 52 mm, the inner ring has a lubrication bore.

Seal types Seal types and their specific features: see table.

Specific features

Specific features	2Z seal						
	Gap seal: not radially preloaded low friction to be used with low levels of contamination						
	2RSR seal						
	Contact seal: radially preloaded to be used with higher requirements for sealing action and under heavy contamination						
	2RS seal						
	Contact seal: axially preloaded to be used with higher requirements for sealing action and under heavy contamination						
Corrosion-resistant design	The inner ring and outer ring are made from corrosion-resistant steel. The rolling elements are protected against corrosion by the grease. Corrosion-resistant designs have contact seals and the suffix 2RS-RB or 2RSR-RB.						
Accuracy and internal clearance	The dimensional and geometrical accuracies correspond to tolerance class PN to DIN 620. The radial internal bearing clearance corresponds approximately to internal clearance group Group N in accordance with ISO 5753-1;						
	internal clearance classes: see Catalogue HR 1, Rolling Bearings.						
Further information	 Further information is given on the following pages: dimension tables, see page 90 and page 91 bolts, see page 73 guideways, see page 76 accessories, see page 106 						

accessories, see page 106.

Possible combinations of track rollers and guideways

Combinations with guideways LFS

rs and guideways with the guideways LFS and shaft and support rail unit TS.

Width an diamete		Track roller LFR					
LFS	d_{Lw}	50/5-4	50/5-6	50/8-6	5201-10	5301-10	5302-10
20	4	•	-	-	-	-	-
25	6	-	•	•	-	-	-
32	6	-	-	•	-	-	-
42	10	-	-	-	•	•	•
52	10	-	-	-	•	•	•
86	10	-	-	-	•	•	•
120	10	-	-	-	•	•	•

• available size

 $^{1)}\,$ Width b and shaft diameter $d_{Lw}\!\!:$ see dimension tables for guideways.

The tables show the possible combinations of track rollers

Combinations with guideways LFS (continued)

Width an diamete		Track roller LFRI	
LFS	d_{Lw}	50/8-6	5201
20	4	-	-
25	6	•	-
32	6	•	-
42	10	-	•
52	10	-	•
86	10	-	•
120	10	-	•

available size

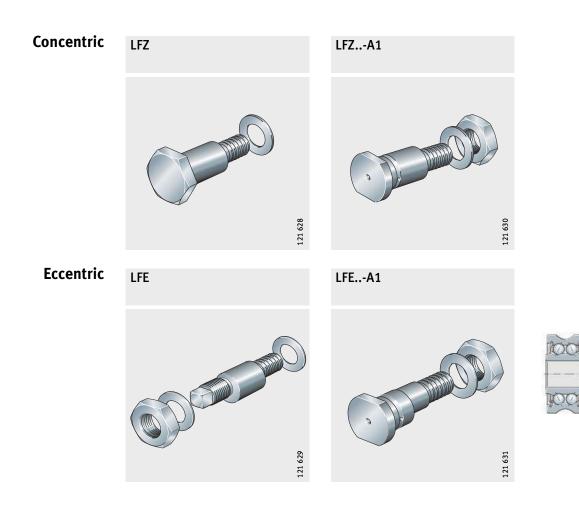
 $^{1)}\,$ Width b and shaft diameter $d_{Lw}\!\!:$ see dimension tables for guideways.

$\begin{array}{c} \text{Combinations with shaft and} \\ \text{support rail units } \textbf{TS}^{1)} \end{array}$

Shaft diame- ter	Track roller LFR								
$d_{Lw}^{(1)}$	5201-12	5204-16	5206-20	5206-25	5207-30	5208-40	5308-50		
12	•	-	-	-	-	-	-		
16	-	•	-	-	-	-	-		
20	-	-	•	-	-	-	-		
25	-	-	-	•	-	-	-		
30	-	-	-	-	•	-	-		
40	-	-	-	-	-	•	-		
50	-	-	-	-	-	-	•		

• available size

 Shaft and support rail units TS and shaft diameter d_{Lw}: see Catalogue WF 1, Shaft Guidance Systems.

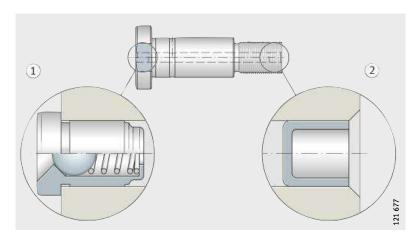

Track rollers

Design and safety guidelines Adjacent construction for non-locating bearing track rollers

Tolerances and surface data for the shaft raceway For non-locating bearing track rollers without an inner ring, the rolling element raceway on the shaft must be hardened and ground. The surface hardness must be 670 HV + 170 HV. The hardening depth CHD or SHD must be sufficiently large.

Design of the shaft: see table.

Diameter toler	ance of shafts	Roughness	Roundness	Parallelism	
without inner ring	with inner ring	max.	max.	max.	
k5	g6 (under point load)	Ra 0,4 (Rz 2)	25% of diameter tolerance	50% of diameter tolerance	



Bolts

Features The bolts, which are made from high strength screw steel, are available with a concentric and eccentric collar; designation LFZ or LFE. Depending on their intended purpose, they are supplied with a washer, nut, drive fit lubrication nipple and sealing cap, see table. The eccentric designs LFE and LFE..-A1 allow the track roller guidance systems to be set clearance-free.

Delivered condition	Designation and suffix	Scope of delivery	Design
	LFZ	Concentric bolt with washer	Standard
	LFE	Eccentric bolt with washer and nut	Standard
	LFZA1 LFEA1	Concentric or eccentric bolt with washer and nut, drive fit lubrication nipple and sealing cap	Standard
	NIP-A2	Drive fit lubrication nipple	Accessory
	VD2	Sealing cap	Accessory

Lubrication Bolts LFZ..-A1 and LFE..-A1 (from size 20) have a lubrication hole. Track rollers of outside diameter \geq 52 mm can be lubricated via this hole. A lubrication nipple NIP-A2 can be pressed into the hole, *Figure 1*. If the hole will not be used for relubrication, it must be closed off using the sealing cap VD2.

Drive fit lubrication nipple NIP-A2
 Sealing cap VD2

Figure 1 Drive fit lubrication nipple and sealing cap

Corrosion-resistant design	In this case, the bolts, washers and nuts are made from corrosion-resistant steel. These designs have the suffix RB.
Further information	Further information is given on the following pages: dimension tables, see page 84 track rollers, see page 68
	guideways, see page 76

accessories, see page 106.

Product overview Guideways

Wide, flat design For toothed racks or toothed belts

Curved guideway element

Guideways

Designs	Guideway	Design
	LFS	With solid profile for location from above through holes
	LFSC	 With hollow section profile (low mass) Location from above through holes The end faces of the hollow sections are closed off using plastic end covers
	LFSF	Flat guideway Preferably for applications with stationary carriage and moving guideway Location from above through holes
	LFSM	 With support rail giving high bending rigidity The guideway can be incorporated in modular constructions by means of slots. The slots are designed for nuts to DIN EN ISO 4032 and T-nuts to DIN 508 The hollow sections are closed off using plastic end covers. Special plastic end covers are available for the slot closing strips
	LFSR	Curved guideway element made from steel Location from above through holes Combinations of curved guideway elements or of curved guideway elements and straight guideways should be treated in the same way as multi-piece guideways and must always be ordered together

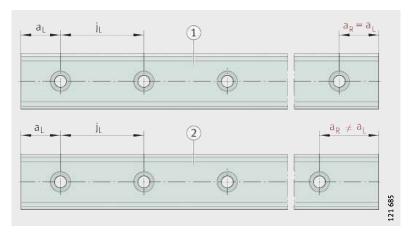
Features Guideway designs: see table.

Designs	Guideway	Design
continued	LFS120	 Wide, low guideway With recesses for toothed racks or toothed belts Location from above through holes
	LFSFH	 Flat guideway with only one shaft as raceway Mainly for applications with increased support spacing Location from above through holes
	LFS32-N, LFSNZZ	 With T-slot for location from below The upper slot in the guideways and the lateral slots are suitable for toothed racks or toothed belts Supplied with special support washers for the fixing screws; the quantity is based on the length of the guideway
	TSN	Composite guideway, aluminium support rail with screw mounted raceway shaft Location from above See Catalogue WF 1, Shaft Guidance Systems

Guideways without fixing holes

All LFS guidances with the exception of LFSR are also available without fixing holes; suffix OL.

ØC


X

Guideways

Design and safety guidelines Guideway hole patterns

Unless specified otherwise, guideways have a symmetrical hole pattern, *Figure 1*.

Upon request, an asymmetrical hole pattern may be available. In this case, $a_L \ge a_{L \text{ min}}$ and $a_R \ge a_{R \text{ min}}$.

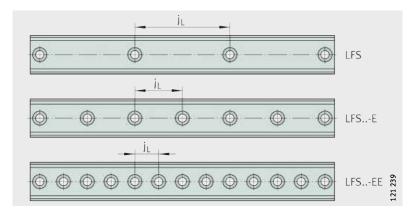

Symmetrical hole pattern
 Asymmetrical hole pattern

Figure 1 Hole patterns of guideways with one row of holes

Hole pitch values

The hole pitch values j_L are stated in the dimension tables. For high loads, guideways are available with reduced hole pitch values j_L , *Figure 2*.

These guideways have the suffix E or EE; examples: LFS..-E, LFS..-EE.

Figure 2 Hole spacings j_l

Maximum number of pitches between holes

The number of pitches between holes is the rounded down whole number equivalent to:

$$n = \frac{l - 2 \cdot a_{L \min}}{j_L}$$

The spacings a_L and a_R are generally determined as follows:

$$a_{L} + a_{R} = l - n \cdot j_{L}$$

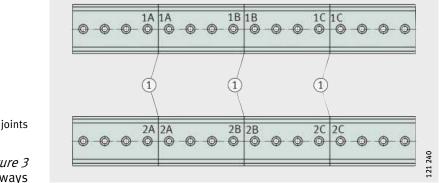
For guideways with a symmetrical hole pattern:

$$\mathbf{a}_{\mathsf{L}} = \mathbf{a}_{\mathsf{R}} = \frac{1}{2} \cdot \left(\mathsf{I} - \mathsf{n} \cdot \mathsf{j}_{\mathsf{L}} \right)$$

Number of holes:

x = n + 1	
n Maximum possible nu l Guideway length	– Imber of pitches between holes mm
a _{L min} , a _{R min} Minimum values for a j _L Spacing between hole	mm _L , a _R , see dimension tables mm 25
a _L , a _R Spacing between star x Number of holes.	mm t or end of guideway and nearest hole –
16 41	luce for a condia are not also much the soundar

i

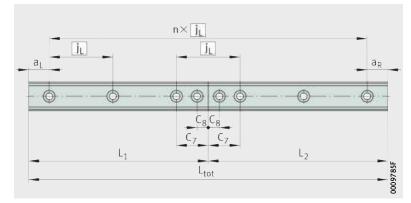

If the minimum values for $a_{\rm L}$ and $a_{\rm R}$ are not observed, the counterbores of the holes may be intersected.

Guideways

Guideways without holes All guideways LFS are also available without holes, with the exception of LFSR. These guideways have the suffix OL, for example LFS..-OL.

Multi-piece guideways If the guideway length required is greater than l_{max}, the guideways are assembled from two or more sections matched to each other and marked accordingly. The sections may be of different lengths. The guideway joint is always arranged centrally between the fixing holes, *Figure 3*.

1 Marked joints


Figure 3 Multi-piece guideways

Accuracy of joint position

In order to achieve accuracy of the joint position, additional fixing is recommended for guideways from size 32 if the spacing C7 is larger than the stated limit value, see table and *Figure 4*, page 83. In these cases, the guideways are supplied with the additional fixing hole already made.

Guideway Spacing between hole and end of guideway C7 C8 Limit value Limit value mm mm LFS32 (-C, -F) 30 11 LFS42-C 50 17 LFS52 (-C, -F) 50 17 LFS86-C 50 17 LFS120 50 17

Spacings for additional hole

Figure 4 Additional hole

Two guideways LFS can have a deviation relative to each other at the joint position of:

- $\Delta b = \pm 0,01 \text{ mm}$
- $\Delta h_4 = \pm 0,05 \text{ mm}, Figure 5.$

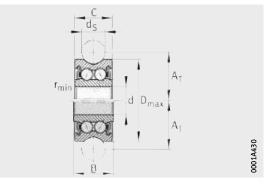


Figure 5 Deviation at the joint position on guideways assembled from sections

()A

Locating bearing track rollers

LFR..-2Z

Dimension table · Dimensions in mm							
Designation	Mass	Dimensions					
, , , , , , , , , , , , , , , , , , ,	m	d	D _{max}	В	A _T	С	
	\approx kg						
LFR50/5-4-2Z-HLC ⁸⁾						_	
LFR50/5-4-2RS-RB-HLC ⁸⁾	0,01	5	16	8	9	7	
LFR50/5-6-2Z-HLC ⁸⁾	0.01		17	8	10.5	7	
LFR50/5-6-2RS-RB-HLC ⁸⁾	0,01	5	17	8	10,5	/	
LFR50/8-6-2Z ⁸⁾	0,02	8	24	11	14	11	
LFR50/8-6-2RS-RB ⁸⁾	0,02	0	24	11	14	11	
LFR5201-10-2Z ⁸⁾	0,08	12	35	15,9	20,63	15,9	
LFR5201-10-2RS-RB ⁸⁾	0,00	12		19,9			
LFR5301-10-2Z ⁸⁾	0,1	12	42	19	24	19	
LFR5301-10-2RS-RB ⁸⁾	0,1						
LFR5302-10-2Z ⁸⁾	0,17	15	47	19	26,63	19	
LFR5302-10-2RS-RB ⁸⁾	-, -	_			- ,		
LFR5201-12-2Z ⁸⁾	0,08	12	35	15,9	21,75	15,9	
LFR5201-12-2RS-RB ⁸⁾				-			
LFR5204-16-2Z ⁹⁾	0,23	20	52	22,6	31,5	20,6	
LFR5204-16-2RS-RB ⁹⁾							
LFR5206-20-2Z ⁹⁾ LFR5206-20-2RS-RB ⁷⁾⁹⁾	0,43	25	72	25,8	41	23,8	
LFR5206-20-2R5-RB ⁽⁾⁾							
LFR5206-25-2RS-RB ⁹⁾	0,43	25	72	25,8	43,5	23,8	
LFR5207-30-2Z ⁹⁾							
LFR5207-30-2RS-RB ⁷⁾⁹⁾	0,66	30	80	29	51	27	
LFR5208-40-2Z ⁹⁾							
LFR5208-40-2RS-RB ⁷⁾⁹⁾	1,36	40	98	38	62,5	36	
LFR5308-50-2Z ⁹⁾	1						
LFR5308-50-2Z-RB ^{7) 9)}	1,4	40	110	46	72,5	44	
Correction restistant design with suffix DD							

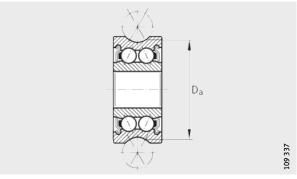
Corrosion-resistant design with suffix ..-RB.

¹⁾ Rolling contact diameter.

²⁾ Effective dynamic load rating as track roller (radial).

³⁾ Effective static load rating as track roller (radial).

⁴⁾ Fatigue limit load.


⁵⁾ Permissible dynamic limit load.

⁶⁾ Permissible static limit load.

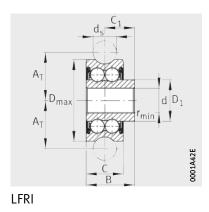
⁷⁾ Corrosion-resistant design available by agreement.

⁸⁾ Lubricated for life, see page 19.

⁹⁾ Relubrication facility via inner ring, see page 19.

Schaeffler Technologies

			Load carrying o	capacity			
d _s	D _a ¹⁾	r _{min}	C _{rw} ²⁾ N	C _{0rw} ³⁾ N	C _{ur} ⁴⁾ N	F _{r per} ⁵⁾ N	F _{Orper} ⁶⁾ N
4	14,54	0,2	1 560	850	43	1 700	1 700
6	15,8	0,2	1 630	900	44,5	2 270	1 800
6	22,8	0,3	4 100	2 300	115	2 550	4 600
10	32,25	0,6	8 400	5 000	250	4750	10 000
10	38,95	0,6	13 200 13 900	7 700 8 200	370 390	6 400 19 600	15 400 16 400
10	44,25	1	14 500	9100	455	9 400	18 200
12	33,1	0,6	8 300	5 000	250	4 650	10 000
16	49,14	1	15 300	10100	520	10 500	20 200
20	64,68	1	23 100	16400	870	21 100	33 000
25	65,35	1	22 700	16100	850	18800	32 000
30	76,02	1	23 100	16400	1 100	18 500	41 500
40	90,36	1,1	38 500	29 000	1 480	51 000	58 000
50	101,7	1,1	54 000	40 500	2 000	69 000	81 000



ROC

OC

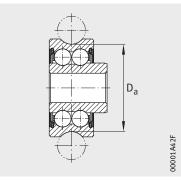
Track rollers

With extended inner ring Locating bearing track roller

$\textbf{Dimension table} \cdot \text{Dimensions in}$	mm										
Designation	Mass	Dimensions									
	m										
	\approx kg										
LFRI50/8-6-2Z	0,025	6,1	24	15,1	14	11	9,6				
LFRI5201-10-2Z	0,09	10,5	35	20,7	20,63	15,9	12,75				

Corrosion-resistant design available by agreement.

¹⁾ Rolling contact diameter.

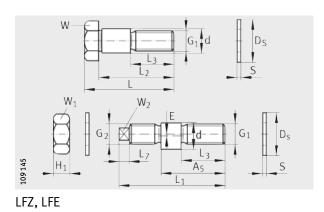

²⁾ Effective dynamic load rating as track roller (radial).

³⁾ Effective static load rating as track roller (radial).

⁴⁾ Fatigue limit load.

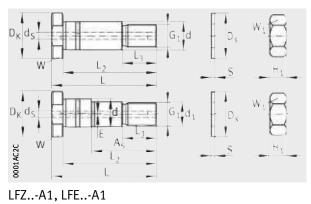
⁵⁾ Permissible dynamic limit load.

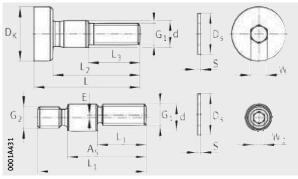
⁶⁾ Permissible static limit load.


LFRI

				Load carrying	capacity			
D ₁	ds	$D_a^{(1)}$	r _{min}	C _{r w} ²⁾	C _{0r w} ³⁾	C _{ur} ⁴⁾	F _{r per} ⁵⁾	F _{0r per} ⁶⁾
j6				Ν	Ν	Ν	Ν	Ν
12,6	6	22,8	0,5	4 100	2 300	115	2 550	4 600
17,8	10	32,25	0,5	8 300	5 000	250	4 5 5 0	8 300

Bolts



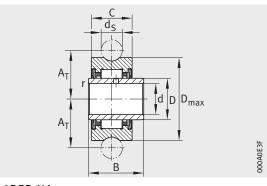

Dimension table · D)imensions in	n mm							
Designation	Mass	Dimension	S						
		d	G ₁	G ₂	L	L ₂	L ₃	L ₁	A ₅
	m								
	\approx kg								
LFZ05	0,01	5	M4	-	19,5	16	9,5	-	-
LFE05-0,5	0,01	2	1114	M4	-	-	9	20	15
LFZ08	0,02	8	M8	-	28,3	24,3	15	-	-
LFE08-1	0,02	0	MO	M8×0,75	_	-	13	32,5	21,6
LFZ12	0,04		M10	-	43	36	22	-	_
LFE12-1	0,04	12	MIO	M10	-	-	19,5	50	33,5
LFZ12/M12	0,06	- 12	M12	-	50,8	43,8	24	-	-
LFE12-1/M12	0,00		1112	M12	-	-	24	57	41
LFZ15	0,06	15	M12	-	50,8	43,8	23,8	-	-
LFE15-1	0,00	1)	1112	M12	-	-	24	57	41
LFZ12×45-A1 ²⁾	0,04	12	M10×1,5	_	50	45	16	_	_
LFE12×45-A1 ²⁾	0,04	12	W10×1,5		50	4)	10		30
LFZ20×67-A1	0,2	20	M16×1,5	_	75	67	23	_	
LFE20×67-A1	0,2	20	M10/(1,9		75	07	25		45
LFZ25×82-A1	0,4	25	M20×1,5	_	92	82	30	_	
LFE25×82-A1	0,4	25	W20/(1,5		72	02	50		57
LFZ30×95-A1	0,62	30	M24×1,5	_	107	95	32	_	
LFE30×95-A1	0,02	50			107	,,	52		67
LFZ40×107-A1	- 1,1				117	107			_
LFE40×107-A1	-,-	- 40	M30×1,5		/	107	42	_	72
LFZ40×115-A1	1,2	70			125	115	74		
LFE40×115-A1	1,2				125	117			72

Corrosion-resistant design available by agreement.

¹⁾ No washer required.

²⁾ Without lubrication hole.

LFZ05 and LFE05-0,5


L ₇	Ds	E	H ₁	S	D _K	ds	d ₁	Width a	across flats	
								W	W ₁	W ₂
_	10	-	-	1)	10		_	3	-	-
_	10	0,5	2,9	- /	-	_		-	7	2
	14	_	-	1	_	_	_	13	-	-
3	17	1	4	-				-	13	5
_	21	-	-					17	-	-
5	21	1	8,4	- 1,8	_	_	_	-	17	6
_	19	-	-	1,0				17	-	-
5		1	6,5					-	17	6
_	21	-	-	2	_	_	_	19	-	-
4		1	6,5	-				-	19	6
-	21	- 0,75	8	2	20	-	- 10	17	17	-
_	30	-	13	3	30	5,9	-	27	24	_
_	50	1	15	2	50	5,9	17	27	24	-
_	37	- 1	- 16	3	40	5,9	- 22		30	_
-	44	- 1	- 19	4	45	5,9	- 27		36	-
-	56	- 1 - 1	24	4	55	5,9	- 36 - 36	46	46	_

Schaeffler Technologies

Non-locating bearing track rollers

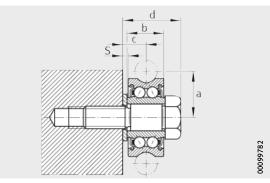
LFR..-2RSR-NA

$\textbf{Dimension table} \cdot \text{Dime}$	nsions in mm												
Designation	Inner ring ¹⁾	Mass	Dim	ensions	5						Load car	rying cap	acity
		m	d	D _{max}	B ⁰ _{-0,12}	A _T	С	D	d_S	r _{min}	C _{r w} ²⁾	C _{0r w} ³⁾	C _{ur w} ⁴⁾
		\approx kg									Ν	Ν	Ν
LFR22/8-6-2RSR-NA	IR8×12×14	0,032	8	24	14	14	11,8	12	6	0,3	4 000	4 300	630
LFR2202-10-2RSR-NA	IR15×20×16	0,079	15	35	16	20,63	13,8	20	10	0,3	6 500	9 300	1 310
LFR2204-10-2RSR-NA	IR20×25×20	0,17	20	47	20	26,64	17,8	25	10	0,3	13700	18 600	2 5 5 0

Non-locating bearing track rollers are also available without an inner ring: LFR..-2RSR-RNA.

Observe the guidelines relating to the adjacent construction, see page 72.

Corrosion-resistant design available by agreement.


¹⁾ Lubrication hole in inner ring (diameter) 2 mm.

²⁾ Effective dynamic load rating as track roller (radial).

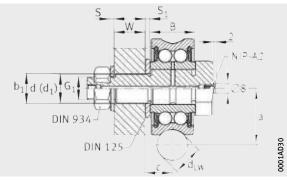
³⁾ Effective static load rating as track roller (radial).

⁴⁾ Fatigue limit load.

Possible combinations of track rollers and bolts

Mounting situation

Dimension table · Dimension:	s in mm					
Designation		Dimensio	ns			
Locating bearing track roller	Bolt	a ¹⁾	b	S	с	d
LFR50/5-4-2Z ²⁾	LFZ05	9	8		4	11 5
LFK5U/5-4-22 ²⁹	LFE05-0,5	9	8	-	4	11,5
LFR50/5-6-2Z	LFZ05	10,5	8	1	5	11,5
LFK3U/3-0-22	LFE05-0,5	10,5	0	1	2	11,5
LFR50/8-6-2Z	LFZ08	14	12	1	6,5	16
LFK30/8-8-22	LFE08-1	14	12	T	0,5	20,5
LFR5201-10-2Z	LFZ12	20,65	17,7	1,8	9,7	24,7
LI K9201-10-22	LFE12-1	20,05	17,7	1,0	9,7	32,3
LFR5301-10-2Z	LFZ12/M12	24	20,8	1,8	11,3	27,8
	LFE12-1/M12	24	20,0	1,0	11,5	34,8
LFR5302-10-2Z	LFZ15	26,65	21	2	11,5	28
	LFE15-1	20,05	21	2	11,5	35
LFR5201-12-2Z	LFZ12×45-A1	21,75	17,9	2	9,9	22,9
	LFE12×45-A1	21,75	17,5	2	,,,	
LFR5204-16-2Z	LFZ20×67-A1	31,5	25,6	3	14,3	33,6
	LFE20×67-A1	51,5	25,0	,	14,5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
LFR5206-20-2Z	LFZ25×82-A1	41	28,8	3	15,9	38,8
	LFE25×82-A1				,-	,-
LFR5206-25-2Z	LFZ25×82-A1	43,5	28,8	3	15,9	38,8
	LFE25×82-A1	,.	,-	-	,-	,-
LFR5207-30-2Z	LFZ30×95-A1	51	33	4	18,5	45
	LFE30×95-A1				- 5,5	
LFR5208-40-2Z	LFZ40×107-A1	62,5	42	4	23	52
	LFE40×107-A1	,-	.=			
LFR5308-50-2Z	LFZ40×115-A1	72,5	50	4	27	60
	LFE40×115-A1	, 2,5		-	27	

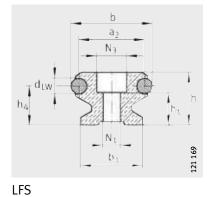

 $^{1)}$ With eccentric bolts, the dimension a varies by $\pm E$ in accordance with the table, page 89.

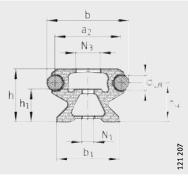
²⁾ No washer required.

Possible combinations of track rollers and bolts

Flying bearing arrangement with bolt ..-A1

Bolt ..-A1


Dimension table · D	imensions in mm											
Designation		Dimens	sions									
Locating bearing	Bolt	а	с	d	d_1	G ₁ ¹⁾	S ²⁾	W ³⁾	S ₁	b ₁	d_{LW}	В
track roller									Washe DIN 12			
LFR5201-12-2Z	LFZ12×45-A1	21,75	9,75	12	-	M10×1,5	2	12	2,5	13	12	15,9
	LFE12×45-A1	21,75	9,75	-	10	W10/1,5	Z	12	2	10,5	12	1,9
LFR5204-16-2Z	LFZ20×67-A1	31,5	11,3	20	-	M16×1,5	3	20	3	21	20	22,6
LINJ204-10-22	LFE20×67-A1	,,,	11,5	-	17	M10/1,5	ر ا	20	3	17	20	22,0
LFR5206-20-2Z	LFZ25×82-A1	41	12,9	25	-	M20×1,5	3	25	4	27	20	25,8
LI K5200-20-22	LFE25×82-A1	41	12,9	-	22	WI20~1,5	ر	23	3	23	20	23,8
LFR5206-25-2Z	LFZ25×82-A1	43,5	12,9	25	-	M20×1,5	3	25	4	27	25	25,8
EIRJ200-23-22	LFE25×82-A1	49,9	12,9	-	22	WI20/1,5	ر ا	25	3	23	20	29,0
LFR5207-30-2Z	LFZ30×95-A1	51	14,5	30	-	M24×1,5	4	32	4	31	30	29
LI KJ207-J0-22	LFE30×95-A1	71	14,5	-	27	WI24/1,J	4	52	4	28	50	29
LFR5208-40-2Z	LFZ40×107-A1	62,5	19	40	-	M30×1,5	4	40	6	41	40	38
LINJ200-40-22	LFE40×107-A1	02,5	19	-	36	MJ0/1,J	4	40	5	37	40	50
LFR5308-50-2Z	LFZ40×115-A1	72 5	22	40	-	M30×1 5	4 40	40	6	41	40	46
LI K9908-90-22	LFE40×115-A1	72,5	23	-	36	M30×1,5	4	40	5	37	40	40


 $^{1)}$ $\overline{\mbox{For nuts in accordance with DIN 934, included in the scope of delivery.}$

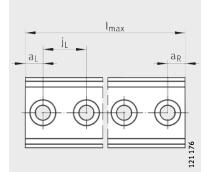
²⁾ For washers in accordance with DIN 125, included in the scope of delivery.

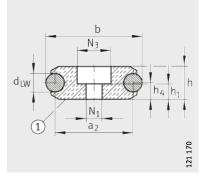
³⁾ Recommended minimum wall thickness.

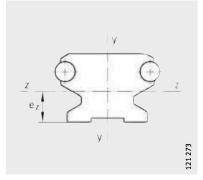
Guideways

LFS..-C

	1										
Designation	Mass	Dimens	ions		Mountir	ng dimens	ions				
	m	b	h	l _{max} 1)	b ₁	a ₂	j _L	a _L ²⁾		a _R ²⁾	
	\approx kg							min.	max.	min.	max.
LFS20	0,6	20	12,2	2 400	17	16	62,5	9	54	9	54
LFS25	1,1	25	15	2 400	21	19	62,5	10	54	10	54
LFS32	1,6						125		116		116
LFS32-E	1,0		20	6 000	24		62,5		52		52
LFS32-C ⁴⁾	1,1	32	20	0000	24	26	125	11	116	11	116
LFS32-CE ⁴⁾	1,1						62,5		52		52
LFS32-F	1		10	4 0 0 0	-		125		116		116
LFS42-C ⁴⁾			20	6 0 0 0	28		125	20	113	20	113
LFS42-CE ⁴⁾	2,2	42	20	0000	20	32	62,5	20	51	20	51
LFS42-F			15	4 000			125	17	1	17	71
LFS52							250		235		235
LFS52-E	4,4						125		110		110
LFS52-EE			34		40		62,5		49		49
LFS52-C ⁴⁾		52	74	6 0 0 0	40	42	250	17	235	17	235
LFS52-CE ⁴⁾		52		0000		72	125	1/	110	1/	110
LFS52-CEE ⁴⁾	3						62,5		49		49
LFS52-F			18		_		250		235		235
LFS52-FE			10				125		110		110
LFS86-C ⁴⁾	4,4	86	34	6 0 0 0	71	76	250	17	235	17	235
LFS86-CE ⁴⁾	4,4	00	74	0000	/ 1	/0	125	17	110	17	110
LFS120	7,9	120	25	8 000	100	110	250	17	235	17	235
LFS120-E	',,'	120	2.5	0000	100	110	125	1/	110	17	110

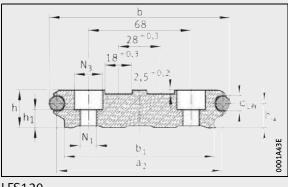

Guideways of corrosion-resistant design: LFS..-RB, observe note on page 18.


Modulus of elasticity for LFS..-C (-CE, -CEE, -E, -E, -F, -FE): 72 000 N/mm².


Guideways LFS, LFS..-C and LFS..-F available without holes: LFS..-OL (-C-OL, -F-OL).

1 Underside marked

- ¹⁾ Maximum length of single-piece guideways; longer guideways are supplied in several sections and are marked accordingly. Observe the length tolerances, see page 30.
- $^{2)}\,\,a_L$ and a_R are dependent on the guideway length l_{max} , calculation: see page 80.
- ³⁾ Under maximum load F_z and F_{0z}, support washers to DIN 433 and the maximum tightening torque according to the table, page 29, are required.
- ⁴⁾ The design of the hollow sections is dependent on the size.
- ⁵⁾ Counterbore depth for screws to DIN 7984.
- $^{\rm 6)}\,$ If support washers to DIN 433 are used, screws to DIN 7984 are recommended.

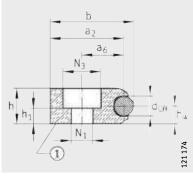


LFS, LFS..-C (-F) View rotated 90°

LFS..-F

Bending axes

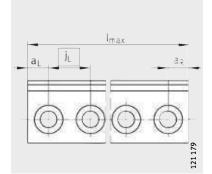
					Surface dat	a				
d _{LW}	h ₄	h ₁	N_1	N ₃ ³⁾	Cross-	у-у		Z-Z		
					sectional area	ly	Wy	ez	lz	Wz
					mm ²	mm ⁴	mm ³	mm	mm ⁴	mm ³
4	9	7,6	4,5	8	165	3 0 6 5	362	6,4	2 0 5 3	324
6	10,6	8,5	5,5	10	237	6 390	608	7,5	4 510	600
	15	12			440	20 100	1 440	10,4	14 100	1 360
6	15		6,5	12	261	18 305	1 165	10,1	10072	995
	5	3,5 ⁵⁾			230	11 300	810	5	2 1 9 0	438
10	12,6	12 ⁶⁾	9	15	358	33 929	1 858	10,1	14052	1 391
	7,5	8 ⁵⁾			370	29 280	1864	7,5	16 200	2 1 6 0
	25,1	21			1 170	138624	5 878	17,8	113 037	6 350
10	23,1		11	19	649	113821	4 896	17,1	74 878	4 378
	9	8 ⁵⁾			670	84 000	3 610	9	19900	2 211
10	25,1	21 ⁶⁾	13	21	1 185	613720	16 587	17,5	155 160	8 866
10	16,1	12	11	19	2 468	2 330 980	40751	12,5	9 365	117074

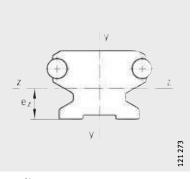


Guideways

LFS..-FH

Dimension table ·	Dimensions	in mm									
Designation	Mass	Dimensi	ons		Mountin	g dimensi	ons				
	m	b	h	l _{max} 1)	a ₂	a ₆	j _L	a _L ²⁾		a _R ²⁾	
	\approx kg							min.	max.	min.	max.
LFS32-FH	0,8	26	10	4 000	23	13	125	11	116	6	116
LFS32-FHE	0,0	20	10	4 000	25	15	62,5	11	52	0	52
LFS52-FH							250		235		235
LFS52-FHE	2,3	42	18	6 000	37	21	125	17	110	10	110
LFS52-FHEE							62,5		49		49
					· .						


Guideways of corrosion-resistant design: LFS..-RB, observe note on page 18.

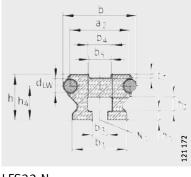

Guideways LFS..-FH available without holes: LFS..-FH-OL.

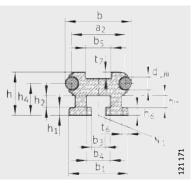
Modulus of elasticity for LFS..-FH (-FHE, -FHEE): 72 000 N/mm².

1 Underside marked

- Maximum length of single-piece guideways; longer guideways are supplied in several sections and are marked accordingly. Observe the length tolerances, see page 30.
- $^{2)}\,\,a_L$ and a_R are dependent on the guideway length $l_{max},$ calculation: see page 80.
- ³⁾ For screw to DIN 912-8.8 (DIN EN ISO 4762), under maximum load support washers to DIN 433 (DIN EN ISO 7092) are required.
- ⁴⁾ Counterbore depth for screws to DIN 7984.

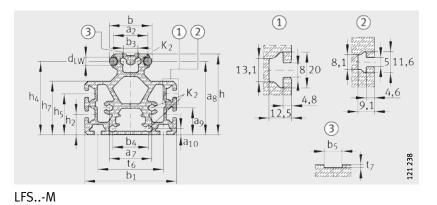
LFS..-FH View rotated 90°

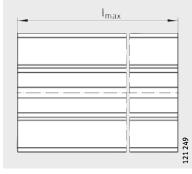

Bending axes


					Surface dat	ta				
d _{LW}	h ₁	h ₄	N ₁ ³⁾	N ₃		у-у		Z-Z		
					sectional area	ly	Wy	ez	lz	Wz
					mm ²	mm ⁴	mm ³	mm	mm ⁴	mm ³
6	3,5	5	6,5	12	216	8 681	790	5	1 897	379
10	8 ⁴⁾	9	11	19	629	66 642	3 765	9	17 798	1 977

Guideways

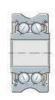
LFS32-N

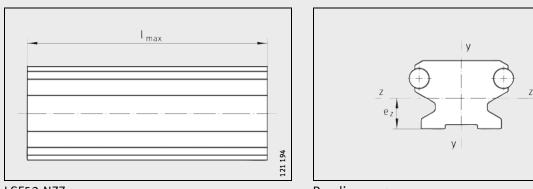

Dimension ta	able · Dim	ensio	ns in m	Im													
Desig-	Mass	Dim	ensions	5	Mounti	ng dir	nensio	าร									
nation	m	b	h	l _{max} 1)	b ₁	a ₂	b ₃ ²⁾	b ₄	b ₅	t ₆	a ₇	j _L 3)	d_{LW}	h ₁	h ₂	h ₅	h ₄
	\approx kg/m																
LFS25-M ⁵⁾	3,5	25	46	4 0 0 0	56	19	I	-	5,2	30	-	-	6	-	22	-	41,6
LFS32-M ⁵⁾	6,4	32	66,5	8 0 0 0	75	26	-	-	10,2	43		-		-	25		61
LFS32-N	1,4	52	20	4 0 0 0	24	20	6,5	10,5	10,5	-] _	125	6	4	6	_	15
LFS52-M ⁵⁾	11,2	52	98,6	8 0 0 0	112	42	18	44	10,2	80	52	-	10	-	25	50	89,7
LFS52-NZZ	3,9	52	34	0000	46,5	42	11	18,5	18,5	4,7	-	250	10	6,4	9	-	25,1

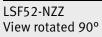

Guideways of corrosion-resistant design: LFS..-RB, observe note on page 18.

Modulus of elasticity for LFS..-M (-N, -NZZ, -ZZ): 72 000 N/mm².

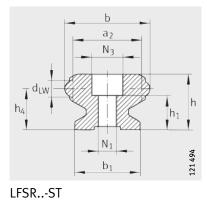
(1) For LFS52-M and LFS32-M; (2) For LFS25-M; (3) Detail of slot

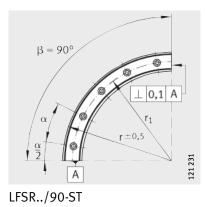

- Maximum length of single-piece guideways; longer guideways are supplied in several sections and are marked accordingly. Observe the length tolerances, see page 30.
- ²⁾ For screw to DIN 931 (DIN EN ISO 4014), DIN 933-8.8 (DIN EN ISO 4017), special support washers included in scope of delivery for guideways LFS52-NZZ.
- ³⁾ Recommended screw pitch (hole spacing), see page 80.
- ⁴⁾ One core hole for non-cutting thread drill or self-tapping screws to DIN 7513.
- ⁵⁾ The guideway LFS..-M can only be combined with carriages with adjustable clearance. If SF and LFCL carriages are to be used, please contact us in advance.




LFS..-M View rotated 90°

								1						
								Surface da	ita					
h ₇	h ₆	t ₇	a ₁₀	a ₉	a ₈	N ₁	K ₂	Cross-	у-у		z-z			
								sectional area	ly	Wy	ez	lz	Wz	
							Ø ⁴⁾	mm ²	mm ⁴	mm ³	mm	mm ⁴	mm ³	
31,5	-	1,6	-	-	-	-	4,65	1156	314 429	11 2 3 0	19,4	186 693	9623	
47		1 (-		2 206	1 000 234	26672	36,8	762105	20707	
-	_	1,6	-	-	_	M6	_	360	19600	1 400	11,1	12600	1 1 3 5	
65,4	-	1,8	7,5	33	89,7	-	7,45	3 691	3717250	66 380	42,6	3 014 470	55 462	
10	6	5	-	-	-	M10	-	994	170350	7 327	16,8	82786	4 927	





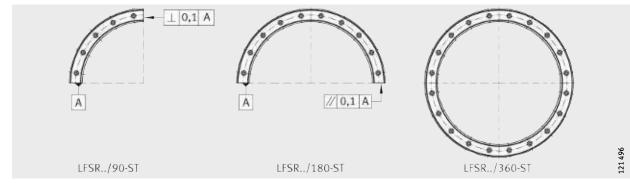
121 273A

Bending axes

Guideways

Dimension table · Dimensions in mm Dimensions Designation Mass b β m h b_1 a₂ r o ≈ kg LFSR32-100/90-ST 0,5 90 LFSR32-100/180-ST 1 100 180 LFSR32-100/360-ST 2 360 LFSR32-150/90-ST 0,8 90 LFSR32-150/180-ST 1,6 150 180 LFSR32-150/360-ST 3,2 360 32 20 24 26 LFSR32-300/90-ST 1,7 90 LFSR32-300/180-ST 3.4 300 180 LFSR32-300/360-ST 6,8 360 LFSR32-500/90-ST 2,9 90 LFSR32-500/180-ST 500 180 5,8 LFSR32-500/360-ST 360 11,6 LFSR52-150/90-ST 2 90 LFSR52-150/180-ST 4 150 180 LFSR52-150/360-ST 8 360 LFSR52-300/90-ST 4,5 90 LFSR52-300/180-ST 9 52 34 300 180 40 42 LFSR52-300/360-ST 18 360 LFSR52-500/90-ST 7,8 90 LFSR52-500/180-ST 180 15,6 500 LFSR52-500/360-ST 31,2 360

Attention!

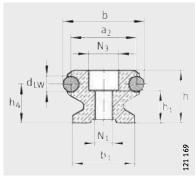

If curved guideway elements are required in combination with straight guideway sections, these must always be ordered together as a unit.

Note the guidelines relating to mounting of curved guideway elements, see page 27.

Corrosion-resistant design available by agreement.

¹⁾ For screw to DIN ISO 4762-8.8.

²⁾ Number of holes on the pitch circle r_1 .


LFSR..-ST

d _{LW}	h ₁	h ₄	N ₁ ¹⁾	N ₃	x ²⁾	r ₁	α	α/2	
							o	0	
					3	84	30	15	
					12		50	15	
					3				
					6	134	30	15	
6	13,5	15	6,5	12	12				
					4		22.5	11.25	
					8	284	22,5	11,25	
					5				
					10	484	18	9	
					20				
					3				
					6	124	30	15	
					12				
10	21	25,1	11	19	8	274	22,5	11,25	
					16		,		
					5				
					10	474	18	9	
					20				

100

IOC

Closed oval tracks with guideway connectors VBS

LFS (section A-A)

Dimension table · Dimensions in mm											
Closed oval tracks		Dimen	isions			Mounting dimensions					
Designation		b	h	β	l _{max} 1)	b ₁	a ₂				
with two 180° arcs	with four 90° arcs			o							
-	LFS32××OV-100-VBS			90							
LFS32×0V-100-VBS	-			180							
-	LFS32××OV-150-VBS			90							
LFS32×0V-150-VBS	-	32	20	180	6.000	24	26				
_	LFS32××OV-300-VBS	52	20	90	6 000 24		20				
LFS32×0V-300-VBS	-			180							
-	LFS32××OV-500-VBS			90							
LFS32×0V-500-VBS	-			180							
-	LFS52××OV-150-VBS			90							
LFS52×0V-150-VBS	-			180							
-	LFS52××OV-300-VBS	52	34	90	6 000	40	42				
LFS52×0V-300-VBS	-	52	54	180	0000	40	42				
-	LFS52××OV-500-VBS			90							
LFS52×0V-500-VBS	-			180							

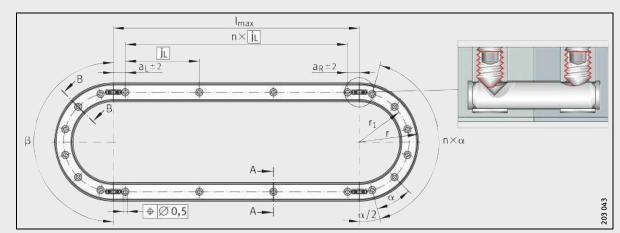
Attention!

If curved guideway elements are required in combination with straight guideway sections,

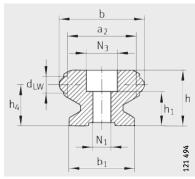
these must always be ordered together as a unit.

Closed oval tracks can only be ordered as a single unit.

A unit consists of two curved guideway elements LFSR with an arc dimension 180°

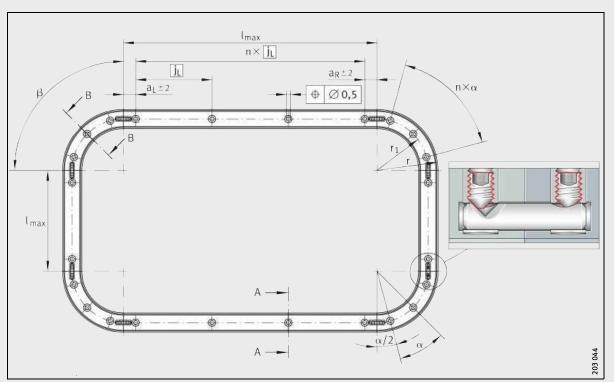

and two straight guideways LFS or a unit of four curved guideways LFSR with an arc

dimension 90° and four straight guideways LFS.


Note the guidelines relating to mounting of curved guideway elements, see page 27.

¹⁾ Maximum length of single-piece guideways.

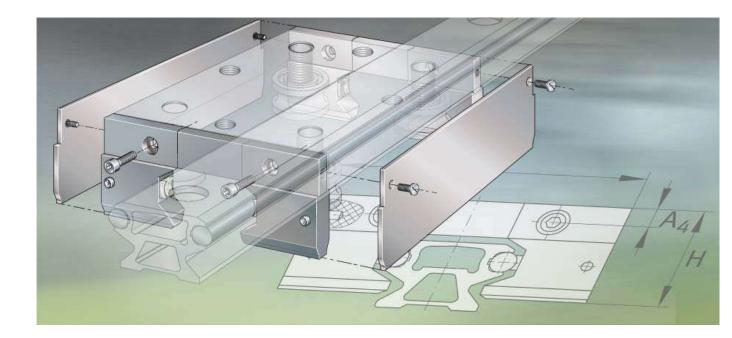
- ²⁾ For screw to DIN ISO 4762-8.8.
- ³⁾ Number of holes on the pitch circle r_1 .



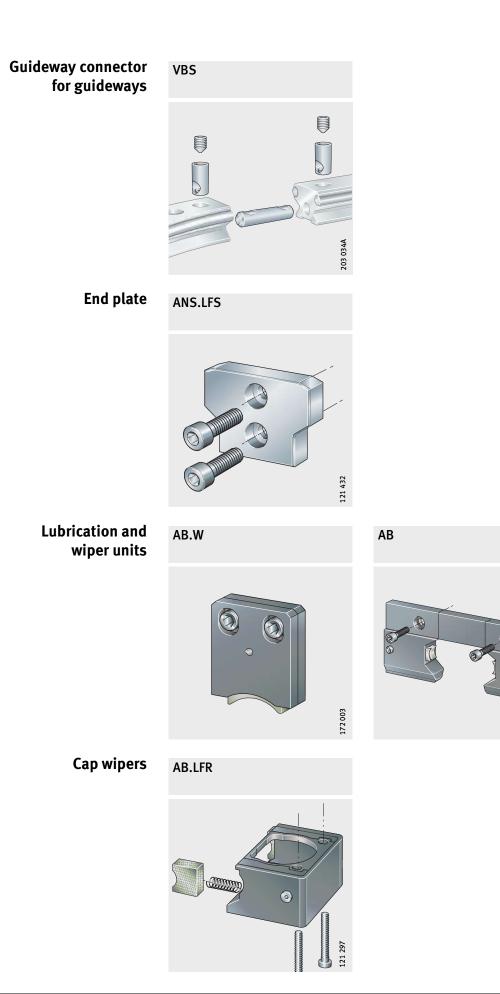
Closed oval track with two 180° arcs

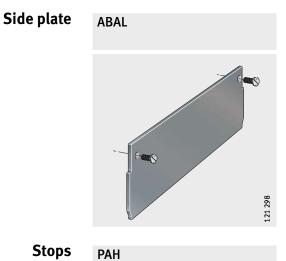
LFSR (section B-B)

jL	a _L , a _R	a _L , a _R		h ₁	h ₄	N1 ²⁾	N ₃	x ³⁾	r	r ₁	α
	min.	max.									0
	36							3	100	84	
								6			30
								3	150	134	
125		116	6	12	15	6,5	12	6		284	
	30							4	300	284	22,5
								8			
								5	500	484	18
								10			
	49							3	150	124	30
								6			
250 4		235	10	21	25	11	19	4	300	274	22,5
	41							5			
							10	500	474	18	

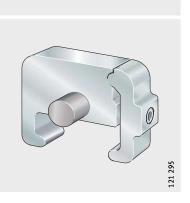

Closed oval track with four 90° arcs

200


DO



Accessories


Product overview Accessories

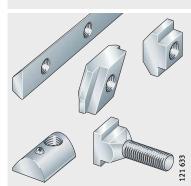
121 308

Stops

121 426

PASTP

End cover Slot closing strip



NAD 121 636

WKL, SPPR

Fasteners Fixing screw T-nuts T-bolt T-strip Fixing bracket Fixing lug MU, SHR, LEIS-M

KA.LFS

Accessories

Features Guideway connector for guideways

Guideway connectors VBS are accessories for curved and straight LFS guideways.

They comprise:

pins

- bushes
- grub screws.

The guideway connectors are suitable for all LF guideways. Joined curved guideways are supplied as standard with the guideway connector. Joined straight guideways are available as an option with the guideway connector.

The VBS reduces running noise at the joint, ensures an increased operating life for the guidance system and improves the operational reliability.

End plate End plates ANS.LFS (also for use with hollow section guideways) are made from steel. They secure the rolled-in raceway shafts by means of form fit. In the case of solid section guideways, holes must be made in the end faces (by the customer) for screw mounting of the end plates.

The end plates prevent the shaft creep that can occur under unfavourable conditions on all guideways that comprise an aluminium support rail into which a steel shaft is rolled or pressed.

These can be supplied already fitted, but this must be indicated when ordering.

Lubrication and wiper units Design AB.W

The lubrication and wiper unit AB.W comprises a plastic housing and is fixed to the adjacent construction. It contains a felt lubrication insert. This is supplied soaked with oil that has H1 approval and can be replenished with oil via a hole in the housing if necessary. Lubrication and wiper units AB.W are supplied with fixing screws.

Design AB The lubrication and wiper unit AB comprises a plastic housing and is screw mounted to the end of the carriage LFL-SF or LFDL. It contains felt lubrication inserts on both sides. These are supplied soaked with oil that has H1 approval and can be replenished with oil via lubrication nipples if necessary. The lubrication and wiper units AB can be fixed to carriages using two screws.

If the lubrication and wiper unit AB is used together with a stop PAH or PASTP, the central section must be removed, see *Figure 1*.

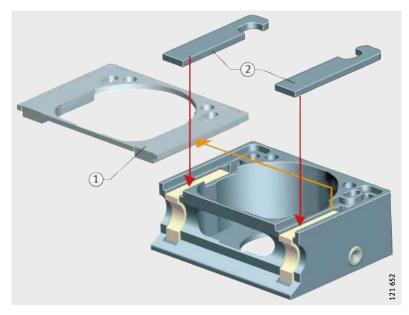

Central section, supplied loose
 Felt lubrication inserts
 Fixing screws, supplied loose

Figure 1 Lubrication and wiper unit AB

Accessories

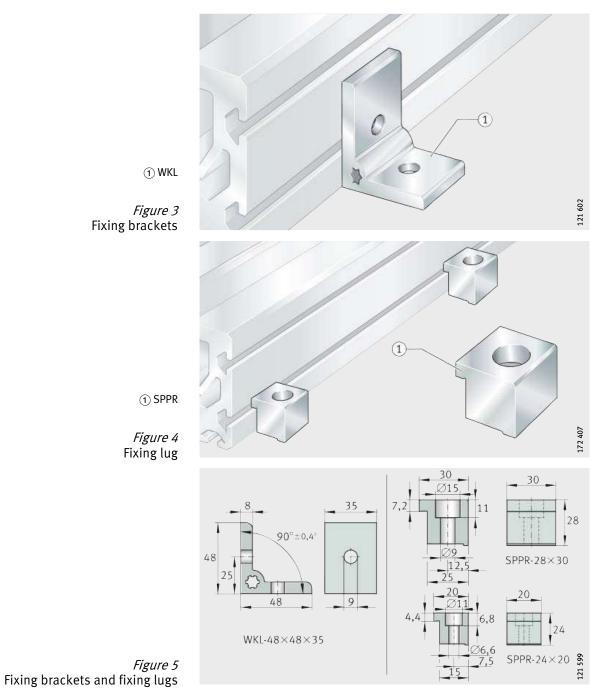
- Cap wipersThe cap wipers comprise a plastic housing and are slid over the track
roller from below. They contains felt lubrication inserts on both
sides. These are supplied soaked with oil that has H1 approval and
can be replenished with oil via lubrication nipples if necessary.The cap wipers can be fixed using two screws to the screw mounting
channels in the carriage LFCL and thus seal the track rollers
from below at the screw head. When bolts LFZ and LFE are used
in an application design, this gives a gap.
Cap wipers are supplied with fixing screws.
- Design AB.LFRIf two or more AB.LFR are used per side, the displacement resistance
can be reduced by removing the felt insert on the inner side.AB.LFR are suitable for mounting on the carriage LFCL42 as well as
customer designs. For mounting on the carriage LFCL42, the upper
cover must be replaced by the two covers supplied, *Figure 2*.

For mounting on the customer design

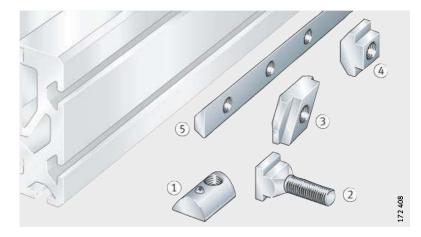
 For mounting on LFCL42

Figure 2 Mounting on carriage LFCL Design AB.LFR5302

An exception is the cap wiper AB.LFR5302. This comprises an end cover and a relubrication and wiper unit AB.W10 that can be screw mounted to either the right or left of the end cover. Its function and location correspond to those of the other sizes.


Side plate	The side plate ABAL is made from plastic and can be screw mounted to the sides of carriages LFLSF. The side plates are used to sup- plement the lubrication and wiper units AB. The carriage can be sealed on all sides, with the exception of the underside, by means of two side plates and two lubrication and wiper units. The side plate is supplied with fixing screws. It can only be mounted in conjunction with the lubrication and wiper unit AB.
Stops	
Design PAH	The stop PAH comprises anodised aluminium and a buffer made from shock-absorbent plastic. The stop can be placed at any position on guideways. It is then clamped in place by means of a screw. The stop is used as an end stop or restricts the travel of the carriage.
	The central section of lubrication and wiper units must be removed if the carriage is to run up against a stop PAH, see page 109.
Design PASTP	The stop PASTP is made from plastic. It can be screw mounted in a threaded hole (to be made by the customer) in guideways. This hole can be drilled at any position on guideways LFS. The stop is used as an end stop or restricts the travel of the carriage. The central section of lubrication and wiper units must be removed if the carriage is to run up against a stop PASTP, see page 109.
End cover	End covers KA are made from plastic. The end covers close off the end faces of the hollow sections in guideways LFSC and LFSM as well as in the hollow section carriage LFCL.
Slot closing strip	Slot closing strips NAD are made from plastic. They close off the slots in the guideway LFSM. For information on NAD, see publication AL 1, Driven Linear Units.

Accessories


Fasteners Fixing brackets, fixing lugs

For location of LFS-M with the integral profiled aluminium support rail, fixing brackets and fixing lugs are available, *Figure 3*, *Figure 4*, *Figure 5* and table, page 113.

T-strip, T-nuts, T-bolts

For integration in existing systems or for extension, T-strips, T-nuts and corresponding T-bolts are available, *Figure 6* and table.

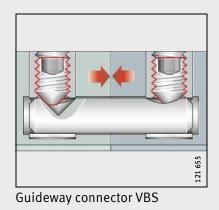
MU..-POS
 SHR-DIN787-M8×8×32
 MU-M
 MU-DIN508
 LEIS-M, T-slot

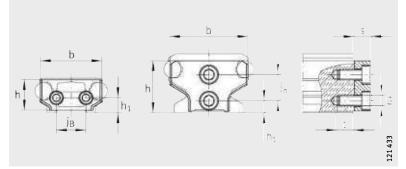
Figure 6 Fixing screws and T-nuts

Fasteners and designations

F .	
Fastener	Designation
Fixing bracket	WKL-48×48×35
For slot width 8 mm (LFS32-M, LFS	52-M)
Clamping lug	SPPR-28×30
T-nut	MU-DIN508-M4×8 MU-DIN508-M6×8
Rotatable T-nut	MU-M4×8-Rhombus MU-M6×8-Rhombus
Positionable T-nut	MU-M6×8-POS MU-M8×8-POS
T-bolt	SHR-DIN787-M8×8×32
T-strip (steel) Hole spacing 50 mm	LEIS-M6/8-T-Nut (state length) ¹⁾ LEIS-M8/8-T-Nut (state length) ¹⁾
For slot width 5 mm (LFS25-M)	
Clamping lug	SPPR-24×20
T-nut	MU-DIN508-M4×5
Positionable T-nut	MU-M5×5-POS

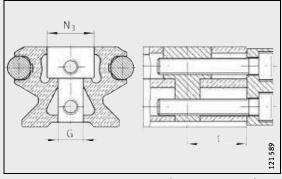
¹⁾ Maximum single-piece length: 2 000 mm.

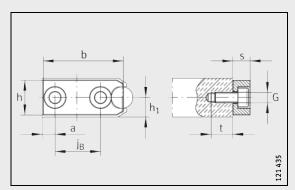

Guideway connectors for guideways LFS


Dimension table ·	Dimens	ions in r	nm							
Designation	Dimens	ions								For guideway
	Т	T ₁	t ₁	a _L	a _R	C ₈	K ₇	K ₈	K ₉	
		±0,1	+0,5	min.	min.	±0,1	+0,2		+0,5	
VBS32	16,5	10	25	30	30	15	12	6,5	9	LFS32, LFS32-E
VBS32-R100	10,5	10	17	22	50	9	12	0,5	7	LFS32, LFS32-E
VBS42	16,5	10	25	30	30	15	12	6,5	9	LFS42-C, LFS42-CE
VBS52	30	22	-	30	40	20	- 16	8	13	LFS52, LFS52-E, LFS52-EE, LFS52-C, LFS52-CE, LFS52-CEE
VBS52-R150	30 22		23	33	40	14				LFS52, LFS52-E, LFS52-EE, LFS52-C, LFS52-CE, LFS52-CEE

Attention!

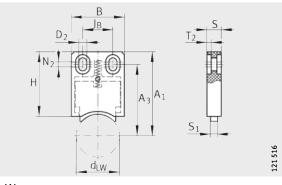
If these are to be used with curved guideways LFSR or with straight guideways not included in the table, please contact us.


End plate

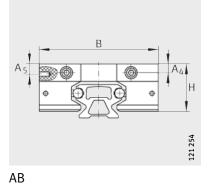

ANS.LFS, ANS.LFS42-C, ANS.LFS86-C, ANS.LFS..-NZZ

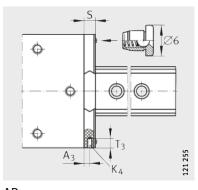
Dimension table · [Dimensions	in mm									
Designation	Dimensi	ons									For
	b	j _B	а	S	t	N ₃ Ø	h	h ₁	j _h	G	guideway
ANS.LFS20	15,4	_	-	6	12	-	11	6,2	-	M5	LFS20
ANS.LFS25	20	-	-	5	7	-	14	4	7	M3	LFS25
ANS.LFS32	30			8	7	-	19	5	10	M4	LFS32
ANS.LFS32-C	30	-	-	8	15	12H13	-	-		Ø6,5H13	LFS32-C
ANS.LFS32-F	26	11			-			5		M4	LFS32-F
ANS.LFS32-FH	22	9	9	6	7	_	9	5	-	M3	LFS32-FH
ANS.LFS32-N	26	11	-	1	-			15		M4	LFS32-N
ANS.LFS42-C	35,5	17	-	8	7	-	18	8	-	M4	LFS42-C
ANS.LFS52	45			10	10	-	30	7	15	M6	LFS52
ANS.LFS52-C	45	-	-	10	20	19H13	30	-		Ø11H13	LFS52-C
ANS.LFS52-F	42	21						9	_		LFS52-F
ANS.LFS52-FH	37	20	6,5	8	10	-	16	7	_	M5	LFS52-FH
ANS.LFS52-NZZ	42	21	-					24			LFS52-NZZ
ANS.LFS86-C	80	54,1	-	9	20	-	30	17,5	-	M6	LFS86-C
ANS.LFS120	114	80	-	5	10	-	16	8	-	M6	LFS120

ANS cannot be mounted on: LFS32-C: a_L , $a_R < 28$ mm LFS52-C: a_L , $a_R < 40$ mm.


ANS.LFS32-C, ANS.LFS-52-C (hollow section)

ANS.LFS..-F (-FH)

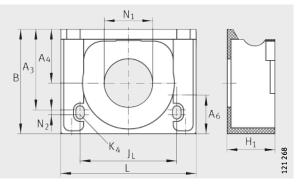

Lubrication and wiper units



AB.W	
------	--

Dimension tab	ole ∙ Dime	nsions i	n mm										
Designation	Mass	Dimen	sions										For track roller
	m	d_{LW}	d_{LW} B S H J_B D_2 T_2 S_1 A_1 N_2 A_3										
	\approx kg					±0,1							
AB.W10	0,03	10	22,5	10	45	10	4,5	3	5	49	4	40,3	LFR5201, LFR5301, LFR5302
AB.W12	0,03	12	22,5	10	45	10	4,5	3	5	51	4	42,3	LFR5201-12
AB.W16	0,03	16	22,5	10	45	10	4,5	3	5	52	4	43,3	LFR5204-16
AB.W20	0,03	20	22,5	10	45	10	4,5	3	5	54	4	45,3	LFR5206-20
AB.W25	0,03	25	37	10	45	21	5,5	3	5	54	3,5	45,3	LFR5206-25
AB.W30	0,03	30	37	10	45	21	5,5	3	5	59	3,5	50,3	LFR5207-30
AB.W40	0,03	45	37	10	45	21	5,5	3	5	71	3,5	62,3	LFR5208-40
AB.W50	0,03	50	37	10	45	21	5,5	3	5	76	3,5	67,3	LFR5308-50

Lubrication and wiper units

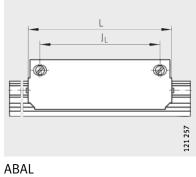


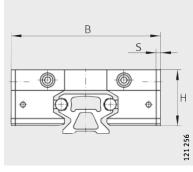
AB View rotated 90°

Dimension tabl	e ∙ Dimens	sions in m	ım									
Designation	Mass	Dimens	ions							For carriage		
	m	В	T ₃ S A ₃ H A ₄ A ₅ K ₄						K ₄			
									For screws to DIN 7972			
	\approx kg											
AB32	0,03	80	6	11	5	32	7	7	ST2,9	LFL32-SF, LFL52-SF, LFL52-E-SF, LFDL32-SF, LFDL32-B ¹⁾		
AB52	0,1	120	20	18	8,5	45,5	9,7	15	ST4,8	LFL32-SF, LFL52-SF, LFL52-E-SF, LFDL32-SF, LFDL32-B		
AB52-E	0,13	135	20	18	8,5	55	12	20,6	ST4,8	LFL32-SF, LFL52-SF, LFL52-E-SF		
AB.LFLL32	0,03	80	6	11	5	32	7	7	ST2,9	LFLL32-SF ¹⁾		
AB.LFLL52	0,1	120	20	18	8,5	45,5	9,7	15	ST4,8	LFLL52-SF		

¹⁾ Please contact us.

Cap wipers

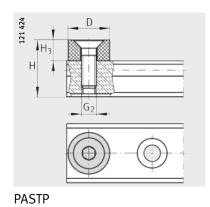


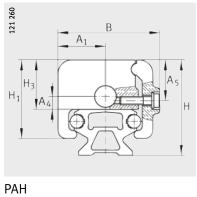

AB.LFR

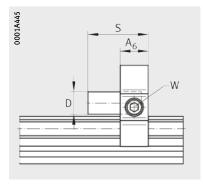
Dimension table	Dimension table · Dimensions in mm													
Designation	Mass	Dimen	imensions For											
	m	В	A_3 A_4 N_2 A_6 L J_L H_1 K_4 N_1 track roller carriage											
	\approx kg						±0,1				+0,1			
AB.LFR50/8	0,02	31,6	25,9	15,6	2	6,4	51	28,5	15	M3	15	LFR50/8	LFCL25	
AB.LFR5201	0,02	43,3	33,4	22,3	2	16	56	40	21,3	M3	20	LFR5201	LFCL42	
AB.LFR5301	0,03	50	38,7	26	2	10,4	76	46	25	M3	20	LFR5301	LFCL86	
AB.LFR5302 ¹⁾	-	57	46	-	1,5	15,5	58	48	31	M3	-	LFR5302	-	

¹⁾ Observe the note on page 110.

Side plate

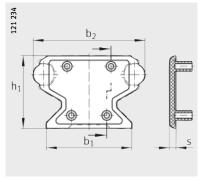


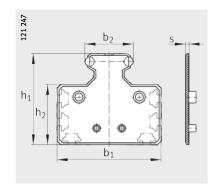

ABAL


Dimension table · Dimensions in mm										
Designation	Mass	Dimensions	For carriage							
	m	В	S	L	JL	Н				
	\approx kg									
ABAL32	0,03	86	3	112	100	32	LFL32-SF			
ABAL52	0,04	130	5	136	117	49,5	LFL52-SF			
ABAL52-E	0,05	145	5	186	167	55	LFL52-E-SF			

Stops

Designation	Mass	Dimensio	Dimensions						
	m ≈ kg	D	H ₃	G ₂	Н				
PASTP20	0,008	14	7	M5	22,2	LFS20			
PASTP25	0,008	14	7	M5	25	LFS25			
PASTP32	0,01	16	11	M6	31	LFS32			
PASTP42	0,01	16	11	M6	31	LFS42-C			
PASTP52	0,01	20	11	M8	45	LFS52			
PASTP86	0,01	20	11	M8	45	LFS86-C			

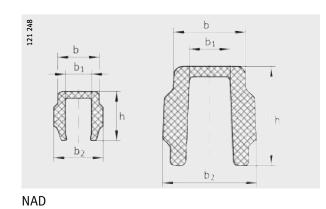




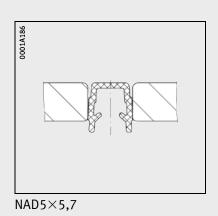
PAH View rotated 90°

Dimension table · Dimensions in mm													
Designation	Mass	Dimensions							For guideway				
	m ∼ ka	В	A ₁	S	A ₆	D	Н	H ₁	H ₃	A ₄	А ₅	Width across flats W	
PAH32	≈ kg 0,05	46	21	30	15	10	39	32	19	7	14	5	LFS32-C
PAH52	0,17	75	35	43	20	16	70,5	58	36,5	9,5	30	6	LFS52-C (-NZZ)

End cover



KA.LFS..-C


KA.LFS..-M

Dimension table · Dimensions in mm										
Designation	Mass	Dimensions		For guideway						
	m	b ₂	b ₁	S	h ₁	h ₂				
	\approx kg									
KA.LFS25-M	0,01	24,4	55,4	3	45,4	30,9	LFS25-M			
KA.LFS32-C	0,01	31,4	23,4	3	19,4	-	LFS32-C			
KA.LFS32-M	0,012	31,4	75,4	3	59,9	46,4	LFS32-M			
KA.LFS42-C	0,012	41,4	27,4	3	19,4	-	LFS42-C			
KA.LFS52-C	0,013	51,6	39,5	3	33,4	-	LFS52-C			
KA.LFS52-M	0,015	51,6	111,4	4	98	64,8	LFS52-M			
KA.LFS86-C	0,015	85,6	70,4	3	33,4	-	LFS86-C			

Slot closing strip

Dimension table · Dimensions in mm										
Designation	Mass	Dimensions	For guideway							
	m	b	b ₁	h						
	\approx kg									
NAD5×5,7	0,012	4,8	3	5,7	5,7	LFS25-M				
NAD8×11,5	0,027	8,2	5,5	9,2	11,5	LFS32-M, LFS52-M				

По вопросам продаж и поддержки обращайтесь:

Алматы (727)345-47-04 Ангарск (3955)60-70-56 Архангельск (8182)63-90-72 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Благовещенск (4162)22-76-07 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Владикавказ (8672)28-90-48 Владимир (4922)49-43-18 Волгоград (844)278-03-48 Волоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89

Россия +7(495)268-04-70

Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Коломна (4966)23-41-49 Кострома (4942)77-07-48 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Курган (3522)50-90-47 Липецк (4742)52-20-81

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Ноябрьск (3496)41-32-12 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Петрозаводск (8142)55-98-37 Псков (8112)59-10-37 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Саранск (8342)22-96-24 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Сыктывкар (8212)25-95-17 Тамбов (4752)50-40-97 Тверь (4822)63-31-35

Казахстан +7(727)345-47-04

27)345-47-04 Беларусь +(375)257-127-884

Узбекистан +998(71)205-18-59

Тольятти (8482)63-91-07 Томск (3822)98-41-53 Тула (4872)33-79-87 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Улан-Удэ (3012)59-97-51 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Чебоксары (8352)28-53-07 Челябинск (351)202-03-61 Черповец (8202)49-02-64 Чита (3022)38-34-83 Якутск (4112)23-90-97 <u>Яросп</u>авль (4852)69-52-93

Киргизия +996(312)96-26-47

эл.почта: iap@nt-rt.ru || сайт: https://ina.nt-rt.ru/