Подшипники-ролики

Технические характеристики

По вопросам продаж и поддержки обращайтесь:

Алматы (727)345-47-04 Ангарск (3955)60-70-56 Архангельск (8182)63-90-72 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Благовещенск (4162)22-76-07 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Владикавказ (8672)28-90-48 Владимир (4922)49-43-18 Волоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89

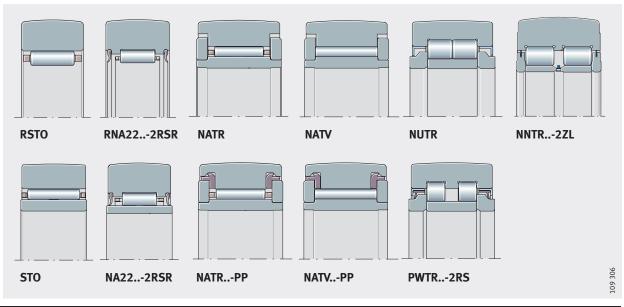
Россия +7(495)268-04-70

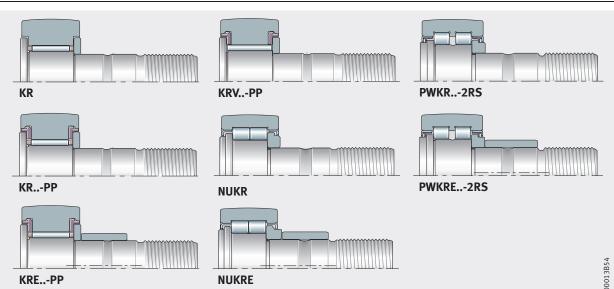
Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Коломна (4966)23-41-49 Кострома (4942)77-07-48 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Курган (3522)50-90-47 Липецк (4742)52-20-81

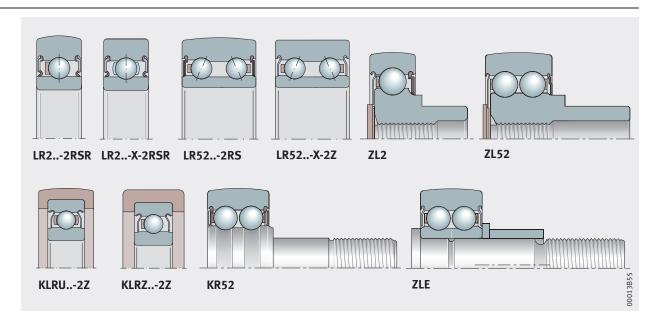
Казахстан +7(727)345-47-04

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Ноябрьск (3496)41-32-12 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Петрозаводск (8142)55-98-37 Псков (8112)59-10-37 Пермь (342)205-81-47

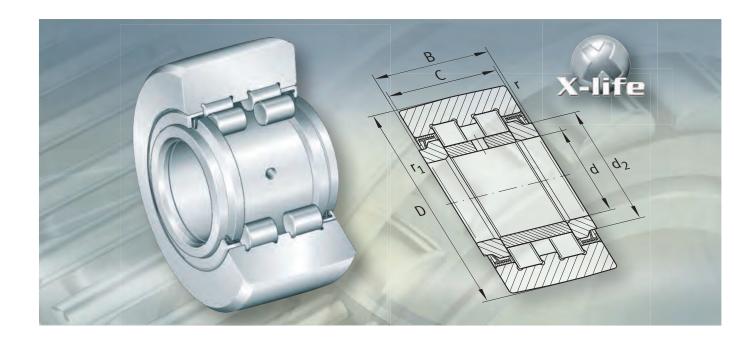
Беларусь +(375)257-127-884


Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Саранск (8342)22-96-24 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Сыктывкар (8212)25-95-17 Тамбов (4752)50-40-97 Тверь (4822)63-31-35


Узбекистан +998(71)20<u>5-18-59</u>


Тольятти (8482)63-91-07 Томск (3822)98-41-53 Тула (4872)33-79-87 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Улан-Удэ (3012)59-97-51 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Чебоксары (8352)28-53-07 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Чита (3022)38-34-83 Якутск (4112)23-90-97 Ярославль (4852)69-52-93

Киргизия +996(312)96-26-47


эл.почта: iap@nt-rt.ru || сайт: https://ina.nt-rt.ru/

Общий обзор Опорные ролики

без осевого центрирования без внутреннего кольца

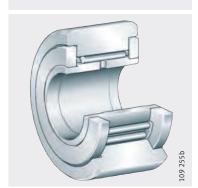
контактные уплотнения

RNA22..-2RSR

с внутренним кольцом

контактные уплотнения

NA22..-2RSR


с осевым центрированием с сепаратором

пластмассовые упорные шайбы или щелевые уплотнения

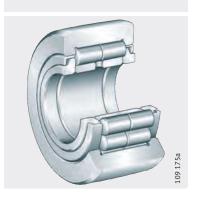
NATR..-PP

NATR

NATV

игольчатые без сепаратора пластмассовые упорные шайбы или щелевые уплотнения

роликовые без сепаратора


лабиринтные уплотнения

NATV..-PP

NUTR

PWTR..-2RS

NNTR..-2ZL

роликовые без сепаратора со средним бортиком

защищенные контактные уплотнения или защитные шайбы с пластинчатым кольцом

Опорные ролики

Основные свойства

Опорные ролики представляют собой одно- или двухрядные подшипники, монтируемые на ось. Они состоят из толстостенного наружного кольца с профилированной образующей поверхностью и комплекта цилиндрических роликов без сепаратора, либо комплекта игольчатых роликов с сепаратором или без сепаратора.

Опорные ролики способны воспринимать высокие радиальные нагрузки, а также осевые нагрузки, возникающие вследствие незначительных перекосов и вращения под углом к направлению движения и, как пример, пригодны для применения в кулачковых приводах, направляющих устройствах и транспортировочных механизмах.

Подшипники выпускаются как с внутренним кольцом, так и без него, с уплотнениями и без уплотнений.

Конструктивный ряд PWTR поставляется в исполнении X-life. Модифицированный материал и усовершенствованная геометрия дорожки качения на наружном кольце обеспечивают повышение долговечности до 30%.

Увеличена статическая и динамическая грузоподъемность. Кроме того, усовершенствованный профиль и улучшенное качество образующей поверхности наружного кольца снижают нагрузку на дорожку качения сопряженной детали.

В результате данных мер получают очень надежные подшипниковые опоры с увеличенным сроком службы.

Профиль образующей поверхности наружного кольца

На практике преимущественное применение находят опорные ролики с выпуклой образующей поверхностью наружного кольца, поскольку в большинстве случаев возникают перекосы относительно дорожки качения сопрягаемой детали, и необходимо избежать напряжений на кромках наружного кольца.

Радиус профиля образующей поверхности равен R = 500 мм. Для конструктивного ряда NNTR..-2ZL значение радиуса приведено в таблице размеров.

Ролики конструктивных рядов NATR..-PP, NATV..-PP, NUTR и PWTR..-2RS имеют образующую поверхность с оптимизированным профилем INA.

У опорных роликов, имеющих данную кривизну профиля поверхности (см. начиная от *puc.* 1, стр. 942 до *puc.* 5, стр. 943):

- контактные напряжения ниже;
- нагрузка на кромки при перекосе ниже;
- износ дорожки качения сопряженной детали меньше;
- срок службы дорожки качения сопряженной детали выше.

Опорные ролики без внутреннего кольца

Опорные ролики RSTO и RNA22..-2RSR не имеют внутреннего кольца. Они особенно компактны в радиальном направлении, однако условием их применения является наличие закаленной и шлифованной дорожки качения на оси.

Ролики конструктивного ряда RSTO разъемные. Их наружное кольцо и комплект игольчатых роликов с сепаратором могут монтироваться раздельно.

С сепаратором, необходимость центрирования наружного кольца

У роликов конструктивных рядов RSTO и RNA22..-2RSR ведение тел качения осуществляется сепаратором. Данные конструктивные ряды не имеют осевого центрирования наружного кольца. Осевое центрирование наружного кольца и сепаратора с роликами должно быть предусмотрено посредством сопрягаемой конструкции, см. раздел «Сопрягаемая конструкция для опорных роликов», стр. 955.

Уплотнения

Ролики RSTO не имеют уплотнений, ролики конструктивного ряда RNA22..-2RSR имеют контактные уплотнения с двух сторон.

Смазывание

Подшипники смазаны консистентной смазкой с комплексным литиевым загустителем согласно GA08.

Опорные ролики с внутренним кольцом

Данные опорные ролики применяются, если ось не имеет закаленной и шлифованной дорожки качения.

Ролики STO разъемные. Наружное кольцо, внутреннее кольцо и сепаратор с роликами могут монтироваться раздельно.

С цилиндрическими или игольчатыми роликами, с сепаратором и без него

Конструктивные ряды STO, NA22..-2RSR, NATR и NATR..-PP имеют сепаратор. Конструктивные ряды NATV и NATV..-РР выпускаются с игольчатыми роликами без сепаратора; опорные ролики NUTR, PWTR..-2RS и NNTR..-2ZL – с цилиндрическими роликами без сепаратора.

Подшипники без сепаратора имеют максимально возможное количество тел качения, поэтому обладают особенно высокой грузоподъемностью. В силу кинематических свойств, достижимы несколько меньшие частоты вращения, чем в случае опорных роликов с сепаратором.

Осевое центрирование наружного кольца

Ролики STO и NA22..-2RSR не имеют осевого центрирования наружного кольца. Оно должно осуществляться посредством сопрягаемой конструкции, см. раздел «Сопрягаемая конструкция для опорных роликов», стр. 955.

У конструктивных рядов NATR и NATV осевое центрирование обеспечивается посредством комбинации пластмассовых и металлических упорных шайб. У роликов NUTR наружное кольцо центрируется по телам качения, у PWTR..-2RS и NNTR..-2ZL – по среднему бортику и телам качения.

Опорные ролики

Защита от коррозии Опорные ролики PWTR..-2RS-RR защищены от коррозии

специальным покрытием Corrotect®. Описание покрытия см. на стр. 970.

Уплотнения Следующая табл. «Уплотнения» демонстрирует уплотнения

опорных роликов.

Уплотнения

Опорный ролик	
Конструктивный ряд	Уплотнение
STO STO	Без уплотнений
NA222RSR	Контактное уплотнение
PWTR2RS	Защищенное контактное уплотнение с двух сторон
NATRPP NATVPP	Трехступенчатое уплотнение посредством пластмассовых упорных шайб
NATR NATV	Щелевое уплотнение
NUTR	Лабиринтное уплотнение
NNTR2ZL	Защитные шайбы с пластинчатыми кольцами

Трехступенчатое уплотнение

Трехступенчатое уплотнение включает в себя щелевое уплотнение между пластмассовой упорной шайбой и наружным кольцом и лабиринтное уплотнение между сформованной уплотняющей кромкой и канавкой во внутреннем кольце.

Пластмассовая упорная шайба, напоминающая по форме тарельчатую пружину, в качестве третьей ступени уплотнения образует дополнительное, прилегающее с натягом контактное уплотнение. Кроме того, она обеспечивает скольжение между наружным кольцом и упорными шайбами, снижая трение и расход смазки.

Смазывание

Подшипники заполнены консистентной смазкой на основе комплексного литиевого загустителя согласно GA08 и могут смазываться через внутреннее кольцо.

Для повторного смазывания применяется консистентная

смазка Arcanol LOAD150.

Рабочая температура

Опорные ролики применяются при рабочей температуре от −30 °C до +140 °C. У подшипников с уплотнениями (дополнительные обозначения 2RS и 2RSR) и подшипников с пластмассовым сепаратором (дополнительное обозначение TV) температура ограничена диапазоном от −30 °C до +120 °C.

Следует учитывать данные, касающиеся температур эксплуатации, приведенные в главе «Основные технические положения», раздел «Смазывание».

Опорные ролики NATR..-PP и NATV..-PP пригодны для рабочих температур от -30 °C до +100 °C, ограниченных свойствами консистентной смазки и материала уплотнений.

Дополнительные обозначения

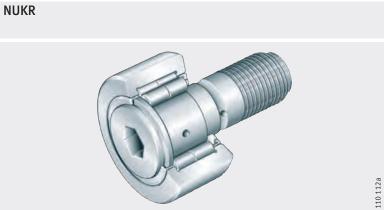
Дополнительные обозначения поставляемых исполнений приведены в табл.

Поставляемые исполнения

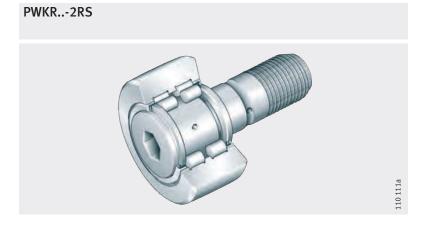
Дополни- тельное обозна- чение	Описание	Исполнение
PP	Пластмассовые упорные шайбы со сформованной уплотнительной кромкой с двух сторон опорного ролика образуют трехступенчатое уплотнение	Стандартное
RR	Специальное антикоррозионное покрытие Corrotect [®]	
TV	Пластмассовый сепаратор	
2RS	Защищенные контактные уплотнения с двух сторон опорного ролика	
2RSR	Радиальные контактные уплотнения с двух сторон опорного ролика	
2ZL	Защитные шайбы с пластинчатыми кольцами с двух сторон опорного ролика	

Общий обзор Опорные ролики с цапфой

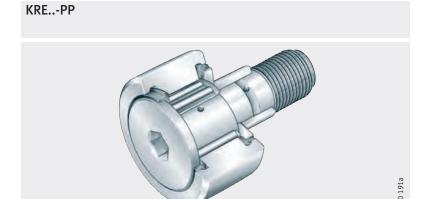
без эксцентрика с сепаратором

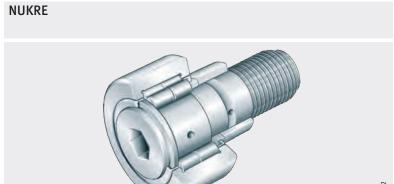

пластмассовые упорные шайбы или щелевые уплотнения

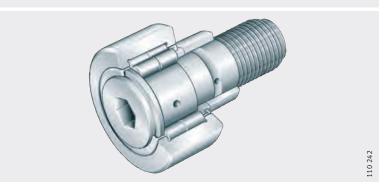
игольчатые без сепаратора


пластмассовые упорные шайбы

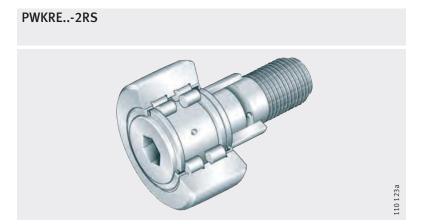
роликовые без сепаратора лабиринтные уплотнения


роликовые без сепаратора со средним бортиком защищенные контактные


уплотнения


с эксцентриком с сепаратором

пластмассовые упорные шайбы



роликовые без сепаратора лабиринтные уплотнения

роликовые без сепаратора со средним бортиком защищенные контактные

уплотнения

Опорные ролики с цапфой

Основные свойства

Опорные ролики с цапфой по своей конструкции идентичны однорядным или двухрядным опорным роликам, однако в качестве дорожки качения имеют массивную цапфу с крепежной резьбой и смазочным отверстием.

Благодаря толстостенному наружному кольцу с профилированной образующей поверхностью и комплекту тел качения, они воспринимают высокие радиальные нагрузки, а также осевые нагрузки, возникающие в результате незначительных перекосов или вращения под углом к направлению движения, и применяются, например, в кулачковых приводах, в направляющих устройствах и транспортировочных механизмах.

Конструктивные ряды PWKR(E) поставляются в исполнении X-life. Модифицированный материал и усовершенствованная геометрия дорожки качения на наружном кольце обеспечивают повышение долговечности до 30%.

Увеличена статическая и динамическая грузоподъемность. Кроме того, усовершенствованный профиль и улучшенное качество образующей поверхности наружного кольца снижают нагрузку на дорожку качения сопряженной детали.

В результате данных мер получают очень надежные подшипниковые опоры с увеличенным сроком службы.

Профиль образующей поверхности наружного кольца

Преимущественное применение находят опорные ролики с цапфой с выпуклой образующей поверхностью наружного кольца, поскольку в большинстве случаев возникают перекосы относительно дорожки качения сопряженной детали, и необходимо избежать напряжений на кромках наружного кольца.

У конструктивного ряда KR радиус профиля образующей поверхности равен R = 500 мм. Конструктивные ряды KR..-PP, KRE..-PP, KRV..-PP, NUKR, NUKRE, PWKR..-2RS и PWKRE..-2RS имеют образующую поверхность с оптимизированным профилем INA.

У роликов с цапфой, имеющих данную кривизну профиля поверхности (см. начиная от рис. 1, стр. 942 до рис. 5, стр. 943):

- контактные напряжения ниже;
- нагрузка на кромки при перекосе ниже;
- износ дорожки качения сопряженной детали меньше;
- срок службы дорожки качения сопряженной детали выше.

Опорные ролики с цапфой производятся в различных исполнениях, а также с эксцентриком и без эксцентрика.

Опорные ролики с цапфой без эксцентрика

Во время монтажа опорных роликов с цапфой без эксцентрика достичь строго определенного положения относительно дорожки качения сопрягаемой конструкции не удается. Раздел «Опорные ролики с цапфой с эксцентриком» см. на стр. 940.

С цилиндрическими или игольчатыми роликами, с сепаратором и без него

Ролики KR, KR..-PP имеют сепаратор, KRV..-PP – игольчатые без сепаратора.

Конструктивные ряды NUKR и PWKR..-2RS — роликовые без сепаратора.

Опорные ролики с цапфой без сепаратора имеют максимально возможное количество тел качения, поэтому обладают особенно высокой грузоподъемностью. В силу кинематических свойств достижимы несколько меньшие частоты вращения, чем в случае роликов с сепаратором.

Осевое центрирование наружного кольца

У роликов KR, KR..-PP и KRV..-PP осевое центрирование осуществляется с помощью заплечиков наружного кольца и упорных шайб.

Наружные кольца роликов конструктивных рядов NUKR и PWKR..-2RS центрируются по телам качения и бортам.

Защита от коррозии

Ролики PWKR..-2RS-RR защищены от коррозии специальным покрытием Corrotect $^{\circledR}$. Описание свойств покрытия приводится на стр. 970.

Уплотнения

Опорные ролики с цапфой оснащаются уплотнениями с двух сторон. Конструктивный ряд КR имеет щелевые уплотнения, ролики KR..-PP — трехступенчатые уплотнения посредством пластмассовых упорных шайб с уплотнительной кромкой с двух сторон подшипника, ролики NUKR — лабиринтные уплотнения, а ролики PWKR..-2RS — защищенные контактные уплотнения. Конструкция трехступенчатого уплотнения PP описана на стр. 934.

Смазывание

Подшипники заполнены консистентной смазкой на основе комплексного литиевого загустителя согласно GA08 и могут смазываться через цапфу. Для повторного смазывания применяется консистентная смазка Arcanol LOAD150.

Опорные ролики с цапфой

Опорные ролики с цапфой с эксцентриком

Положение опорных роликов, имеющих эксцентрик на цапфе, может быть отрегулировано посредством внутренних шестигранников в цапфе со стороны ролика или со стороны крепежной резьбы. Тем самым может быть отрегулировано положение образующей поверхности наружного кольца относительно дорожки качения сопрягаемой конструкции. Это позволяет изготавливать сопрягаемую конструкцию с более грубыми допусками. Кроме того, при использовании нескольких роликов улучшается распределение нагрузки, и возможна простая реализация систем линейного перемещения с предварительным натягом.

Место самого высокого положения эксцентрикового кольца обозначено на торце цапфы, значение эксцентриситета е приведено в таблицах размеров. В том же месте находятся радиальные смазочные отверстия, которые должны лежать в ненагруженной зоне дорожки качения.

С сепаратором или без сепаратора

Ролики KRE..-PP имеют сепаратор, NUKRE и PWKRE..-2RS выпускаются с цилиндрическими роликами без сепаратора.

Подшипники без сепаратора вмещают максимально возможное количество тел качения, поэтому обладают особенно высокой грузоподъемностью. В силу кинематических свойств с ними достижимы несколько меньшие частоты вращения, чем в случае опорных роликов с сепаратором.

Осевое центрирование наружного кольца

У конструктивного ряда KRE..-PP осевое центрирование осуществляется с помощью заплечиков наружного кольца и упорных шайб. Наружные кольца роликов конструктивных рядов NUKRE и PWKRE..-2RS центрируются по телам качения и бортам.

Уплотнения

Опорные ролики с цапфой имеют уплотнения с двух сторон. Конструктивный ряд KRE..-PP имеет трехступенчатые уплотнения посредством пластмассовых упорных шайб с уплотнительной кромкой с двух сторон подшипника, NUKRE – лабиринтные уплотнения, а PWKRE..-2RS – защищенные контактные уплотнения.

Описание трехступенчатого уплотнения РР приведено на стр. 934.

Смазывание

Подшипники заполнены консистентной смазкой на основе комплексного литиевого загустителя согласно GA08 и могут смазываться через цапфу.

Для повторного смазывания применяется консистентная смазка Arcanol LOAD150.

Эксцентрик перекрывает радиальное смазочное отверстие на хвостовике цапфы. Поэтому повторное смазывание следует производить с торцов цапфы.

Рабочая температура

Опорные ролики с цапфой применяются при температурах от -30 °C до +140 °C. У подшипников с уплотнениями (дополнительное обозначение 2RS) температура ограничена диапазоном от -30 °C до +120 °C.

Следует учитывать указания, касающиеся температуры эксплуатации, приведенные в главе «Основные технические положения», раздел «Смазывание».

Опорные ролики с цапфой KR..-PP, KRV..-PP и KRE..-PP пригодны для рабочих температур от -30 °C до +100 °C, ограниченных свойствами консистентной смазки и материала уплотнений.

Дополнительные обозначения

Дополнительные обозначения поставляемых исполнений приведены в табл.

Поставляемые исполнения

Дополни- тельное обозна- чение	Описание	Исполнение
PP	Пластмассовые упорные шайбы с уплотнительной кромкой с двух сторон опорного ролика с цапфой создают трехступенчатое уплотнение.	Стандартное
RR	Специальное антикоррозионное покрытие Corrotect®	
SK	Внутренний шестигранник только на торце цапфы со стороны ролика, без возможности повторного смазывания	
2RS	Защищенные контактные уплотнения с двух сторон опорного ролика с цапфой	

Рекомендации конструктору и обеспечение надежности Оптимизированный профиль INA

Оптимизированный профиль INA характеризуется:

- снижением контактных напряжений при перекосе, рис. 1 и 2;
- более высокой номинальной долговечностью наружного кольца и дорожки качения сопряженной детали, рис. 3;
- уменьшением износа образующей наружного кольца и дорожки качения сопряженной детали, рис. 4 и рис. 5;
- **у**величением жесткости наружного контакта, *рис.* 6.

Эпюры контактных напряжений по Герцу

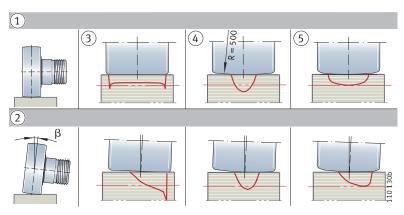
Сравнительный анализ профилей: цилиндрический/с радиусом $R = 500 \text{ мм/оптимизированный INA (C}_{rw}/P_r = 5), puc. 1.$

- (1) вращение без перекоса, $\beta = 0$ мрад
- (2) вращение с перекосом, $\beta = 3$ мрад ③ цилиндрический профиль
 - (4) профиль с радиусом R = 500
 - (5) оптимизированный профиль INA

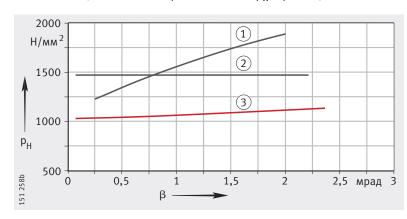
Рисунок 1 Эпюры контактных напряжений по Герцу

Максимальное контактное напряжение по Герцу

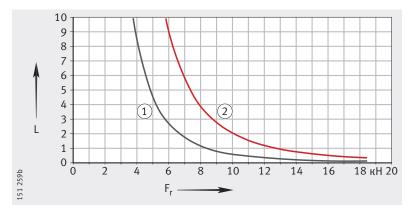
① цилиндрический профиль (2) профиль с радиусом R = 500 (3) оптимизированный профиль INA р_н = максимальное контактное напряжение по Герцу β = угол перекоса


> Рисунок 2 Максимальное контактное напряжение по Герцу

Номинальная долговечность сопряженной дорожки качения

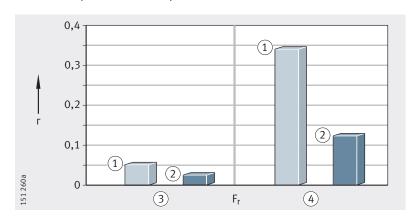

(2) оптимизированный профиль INA L = номинальная долговечность [млн. перекатов] F_r = радиальная нагрузка

(1) выпуклое наружное кольцо, R = 500


Рисунок 3 Номинальная долговечность дорожки качения сопряженной конструкции

Ролик с цапфой NUKR80, $F_r = 13800 \text{ H } (C_{rw}/P_r = 5)$, puc. 2.

Опорный ролик NUTR15, сопряженная дорожка качения из стали 42CrMo4V с твердостью 350 HV, рис. 3.

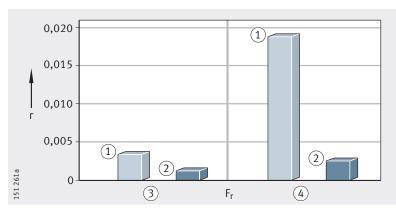


Износ дорожки качения сопряженной конструкции

Дорожка качения из чугуна GGG-50. Среднее значение износа из нескольких испытаний после 360 000 перекатов см. на рис. 4.

① наружное кольцо с R = 500 ② оптимизированный профиль INA ③ низкая нагрузка F_r (4) высокая нагрузка F_r г = износ F_r = радиальная нагрузка

Рисунок 4 Износ дорожки качения сопряженной конструкции



Дорожка качения из стали 58CrV4. Среднее значение износа из нескольких испытаний после 8 000 000 перекатов см. на рис. 5.

(1) наружное кольцо с R = 500 ② оптимизированный профиль INA (3) низкая нагрузка F_r (4) высокая нагрузка F_r $\Gamma = \text{N3HOC}$ F_r = радиальная нагрузка

Рисунок 5 Износ дорожки качения сопряженной конструкции

Опорный ролик NUTR15. Радиальная упругая деформация наружного кольца и комплекта тел качения показана на рис. 6.

Жесткость в области контактов наружного кольца

① выпуклое наружное кольцо, R = 500 2 оптимизированный профиль INA δ_r = радиальная упругая деформация F_r = радиальная нагрузка

Рисунок 6 Жесткость в области контактов наружного кольца

Особенности функционирования опорных роликов и роликов с цапфой

Толстостенные наружные кольца воспринимают высокие радиальные нагрузки. При опоре роликов на плоскую дорожку качения наружные кольца испытывают упругую деформацию. В отличие от подшипника качения с опорой в отверстии корпуса, ролики имеют:

- измененное внутреннее распределение нагрузки. Это учтено в расчете долговечности посредством коэффициентов грузоподъемности C_{rw} и C_{0rw} ;
- изгибающие напряжения в наружном кольце. Эти напряжения учтены посредством допустимых радиальных нагрузок F_{r per} и F_{Or per}. Изгибающие напряжения не должны превышать допустимые по прочности материала напряжения.

Допустимая радиальная нагрузка при динамическом нагружении

Для динамически нагруженных вращающихся подшипников действительна эффективная динамическая грузоподъемность С_{г w}. Расчет номинальной долговечности следует производить, используя Сг

Превышать допустимую динамическую радиальную нагрузку $F_{r \; per}$ запрещается. Если значение $F_{r\;per}$ не указано, то вместо нее действительна эффективная динамическая грузоподъемность С_{г w}. Имеющаяся радиальная нагрузка также не должна превышать это значение.

Если статическая грузоподъемность C_{0r w} меньше динамической грузоподъемности С_{г w}, то действительным допустимым значением является значение Сог w.

Допустимая радиальная нагрузка при статическом нагружении

Для статически нагруженных подшипников без вращения или при редких вращательных движениях действительна эффективная статическая грузоподъемность Сог w.

Значение С_{0г w} следует использовать при расчете запаса статической грузоподъемности S_0 .

Превышать допустимую статическую радиальную нагрузку $F_{0r \, \mathrm{per}}$ не допускается. Если значение $F_{\mathrm{0r}\,\mathrm{per}}$ не указано, то вместо нее замены действительна эффективная статическая грузоподъемность С_{От w}. Имеющаяся радиальная нагрузка также не должна превышать это значение.

Наряду с допустимой радиальной нагрузкой на подшипник следует учитывать допустимую радиальную нагрузку на дорожку качения сопрягаемой детали, см. раздел «Проектирование дорожки качения сопрягаемой детали», стр. 958.

Грузоподъемность и долговечность

Методы расчета долговечности:

- расчет номинальной долговечности по DIN ISO 281;
- расчет скорректированной долговечности по DIN ISO 281;
- расчет достижимой долговечности по DIN ISO 281-4.

Эти методы описаны в главе «Грузоподъемность и долговечность», стр. 40.

Для опорных роликов с цапфой и без и направляющих роликов следует произвести следующие замены:

- C_r , $C_{0r} = C_{rw}$, C_{0rw} эффективная динамич. или статич. грузоподъемность;
- $C_{ur} = C_{urw}$ нагрузка предела усталости для ролика по таблицам разм.

Дальнейшие формулы для расчета долговечности см. на стр. 945.

Дальнейшие формулы для расчета номинальной долговечности

$$L_s = 0.0314 \cdot D \cdot \left(\frac{C_{rw}}{P_r}\right)^p$$

$$L_{h} = 26,18 \cdot \frac{D}{H \cdot n_{osc}} \cdot \left(\frac{C_{rw}}{P_{r}}\right)^{p}$$

или

$$L_h = 52,36 \cdot \frac{D}{\overline{v}} \cdot \left(\frac{C_{rw}}{P_r}\right)^p$$

номинальная долговечность в 10^5 м;

номинальная долговечность в часах работы;

 C_{rw} Н

эффективная динамическая грузоподъемность.

 $C_{r\,w}$ — это нагрузка постоянной величины и направления, при которой достаточно большое количество одинаковых подшипников-роликов достигают номинальной долговечности в один миллион оборотов;

эквивалентная динамическая нагрузка (радиальная нагрузка);

гоказатель степени в формуле долговечности: p=3 для направляющих роликов и роликов с цапфой на шариках, $p={}^{10}/_3$ для опорных роликов и роликов с цапфой с цилиндрическими и игольчатыми роликами в качестве тел качения;

 $\mathrm{M}\mathrm{U}\mathrm{H}^{-1}$

рабочая частота вращения;

D

наружный диаметр ролика;

длина хода в одну сторону при осциллирующих движениях;

 $\mathrm{M}\mathrm{U}\mathrm{H}^{-1}$

количество двойных ходов в минуту;

м/мин средняя скорость перемещения.

Срок службы

Срок службы — это долговечность, достигнутая подшипником при его эксплуатации. Он может заметно отличаться от расчетной номинальной долговечности.

Возможными причинами являются износ и/или усталость вследствие:

- отклонения режимов эксплуатации;
- перекоса ролика и дорожки качения сопряженной детали;
- слишком малого или слишком большого рабочего зазора;
- загрязнения ролика;
- недостаточного смазывания;
- слишком высокой рабочей температуры;
- осциллирующих движений подшипника с очень малым углом поворота, ведущих к образованию рифлений;
- износа образующей поверхности наружного кольца и дорожки качения сопряженной конструкции;
- вибрационных нагрузок и образования рифлений;
- чрезмерных ударных нагрузок, статических перегрузок;
- повреждений при монтаже.

Из-за множественности возможных условий при монтаже и эксплуатации подшипника срок службы не может быть рассчитан точно. Наиболее достоверно он может быть определен путем сравнения с подобными случаями применения.

Запас статической грузоподъемности

Мерой статического нагружения является запас статической грузоподъемности S_0 . Он подразумевает запас грузоподъемности до возникновения недопустимых остаточных деформаций в подшипнике:

$$S_0 = \frac{C_{0rw}}{F_{0r}}$$

запас статической грузоподъемности;

Н

эффективная статическая радиальная грузоподъемность, см. табл. размеров;

 F_{0r} Н

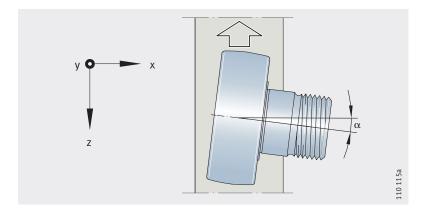
максимальная статическая радиальная нагрузка на ролик.

Ролики считаются высоко нагруженными при запасе статической грузоподъемности $S_0 < 8$.

Запас статической грузоподъемности $\mathsf{S}_0 < \mathsf{1}$ приводит к пластическим деформациям тел качения и дорожек качения, которые могут негативно повлиять на плавность хода. Он допустим только для подшипников с редкими вращательными движениями или для второстепенных применений.

При запасе статической грузоподъемности $S_0 < 2$, пожалуйста, проконсультируйтесь с нашими специалистами.

Требуемая минимальная нагрузка

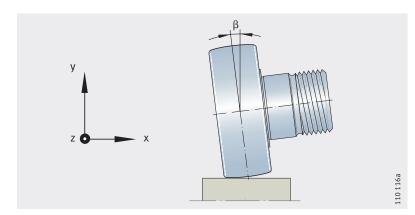

Для того, чтобы наружное кольцо вращалось, не возникало проскальзываний, и ролик не терял контакт с дорожкой качения сопряженной детали, при динамическом нагружении для ролика нужна нагрузка не ниже требуемой минимальной. Как правило, для требуемой минимальной нагрузки действительно соотношение: $C_{0rw}/F_r < 60$.

Вращение под углом к направлению движения

Вращение с курсовым перекосом приводит к дополнительной осевой нагрузке на подшипник качения и осевому проскальзыванию в месте контакта наружного кольца и дорожки качения сопряженной детали, $puc.\ 7$. В зависимости от курсового перекоса α и качества смазки это может привести к износу.

Полная потеря сцепления наружного кольца с дорожкой качения и соответствующий интенсивный износ возникает при угле курсового перекоса $\alpha \ge 1,4 \cdot 10^{-4} \cdot p_H$ (°) или $\alpha \ge 2,5 \cdot 10^{-3} \cdot p_H$ (мрад).

 α = угол курсового перекоса


Рисунок 7 Вращение под углом к направлению движения

Перекос

При движении в наклонном положении, в особенности у роликов с цилиндрическим профилем наружного кольца, возникают высокие напряжения на кромке кольца.

Ролики с выпуклой образующей поверхностью наружного кольца менее чувствительны к перекосу и, поэтому, более предпочтительны в применении.

На практике, для роликов с цилиндрическим профилем наружного кольца повреждения наступают, если угол перекоса $\beta>0,1^\circ$ (1,7 мрад), а для роликов с выпуклой образующей поверхностью наружного кольца, – если угол перекоса $\beta>0,25^\circ$ (4,4 мрад), *puc. 8*.

β = угол перекоса

Рисунок 8 Перекос

Частоты вращения

Максимальная частота вращения подшипников-роликов главным образом определяется допустимой рабочей температурой подшипника качения.

Таким образом, частота вращения зависит от типа подшипника, нагрузки, условий смазывания и условий охлаждения.

Частота вращения при длительном режиме эксплуатации

Указанные в таблицах размеров частоты вращения n_{D G} являются ориентировочными значениями. Они были определены для следующих условий:

- консистентная смазка;
- \blacksquare нагрузки при длительной работе $< 0.05 \cdot C_{0rw}$;
- \blacksquare угол курсового перекоса $\alpha < 0.03^{\circ}$ (< 0.5 мрад);
- температура окружающей среды +20 °C;
- температура наружных колец +70 °C;
- смазанные дорожки качения сопряженной детали;
- отсутствие внешней осевой нагрузки.

Частоты вращения должны быть уменьшены при:

- \blacksquare нагрузках $> 0,05 \cdot C_{0rw}$;
- паличии дополнительных осевых сил (вращение под углом к направлению движения);
- недостаточном теплоотводе.

Более высокие частоты вращения могут быть достигнуты при вращении с перерывами и импульсном смазывании маслом.

Частота вращения для контактных уплотнений

Частота вращения роликов с контактными уплотнениями дополнительно ограничивается допустимой скоростью скольжения уплотняющей кромки.

Момент трения

Момент трения M_R подшипника-ролика зависит от таких факторов, как нагрузка, частота вращения и конструкция ролика, а также от состояния смазки и трения уплотнений. Ввиду разнообразия влияющих факторов момент трения может быть рассчитан только приближенно.

Для роликов с бесконтактными уплотнениями момент трения при нормальных условиях эксплуатации и среднем диапазоне частот вращения может быть рассчитан по следующей формуле:

$$M_R = f \cdot F_r \cdot \frac{d_M}{2}$$

момент трения ролика; коэффициент момента трения, см. табл., стр. 949; радиальная нагрузка; средний диаметр подшипника-ролика (d + D)/2.

Значения, приводимые в таблице «Коэффициент момента трения f» действительны для роликов без уплотнений, находящихся под радиальной нагрузкой.

При применении роликов с уплотнениями следует учитывать более высокие значения коэффициента.

Дополнительные осевые силы, возникающие, например, при больших углах курсового перекоса могут привести, в особенности у подшипников-роликов с игольчатыми роликами в качестве тел качения, к значительному возрастанию значений коэффициента. Подшипники-ролики с шариками в качестве тел качения воспринимают осевые силы без сколь-нибудь заметного изменения трения.

Коэффициент момента трения f

Конструкция подшипника-ролика	Коэффицие f	ЭНТ
Шарикоподшипники, однорядные	от 0,0015	до 0,002
Шарикоподшипники, двухрядные	от 0,002	до 0,003
Радиальные цилиндрические роликоподшипники без сепаратора	от 0,002	до 0,003
Игольчатые подшипники с сепаратором	от 0,003	до 0,004
Игольчатые подшипники без сепаратора	от 0,005	до 0,007

Сопротивление качению

При качении подшипника-ролика по дорожке качения наряду с трением внутри подшипника нужно преодолевать трение качения наружного кольца по дорожке качения.

Сопротивление качению ролика F_{v} определяется по следующей формуле:

$$F_{v} = \frac{2 \cdot (f_{R} \cdot F_{r} + M_{R})}{D}$$

1

сопротивление качению ролика;

. MM

коэффициент трения качения для дорожек качения из закаленной стали:

 $f_R = 0.05 \text{ MM};$

 F_R

радиальная нагрузка;

 M_{R} Нмм момент трения внутри ролика;

наружный диаметр ролика.

Две зоны контакта подшипников-роликов

У подшипников-роликов подлежат смазыванию и раздельному рассмотрению две зоны контакта:

- тела качения и их дорожка качения;
- образующая поверхность ролика и дорожка качения сопряженной конструкции.

В главе «Основные технические положения», раздел «Смазывание» рассматривается зона контакта тел качения и дорожки качения.

Смазывание подшипника

Направляющие ролики с цапфой и без цапфы с шариками в качестве тел качения заполнены литиевой консистентной смазкой на минеральной основе согласно GA13.

Для опорных роликов и опорных роликов с цапфой применяется консистентная смазка согласно GAO8 с противозадирными (EP) присадками на основе комплексного литиевого мыла в качестве загустителя и минерального масла. Консистентные смазки для первичного смазывания приведены в главе «Смазывание», стр. 76.

Консистентные смазки семейства Arcanol для повторного смазывания

Смазка Arcanol	Обозначение по DIN 51825	Тип консистентной смазки	Подшипник-ролик
LOAD150	KP2N-20	Литиевая смазка на основе минерального масла	Опорные ролики с цапфой и без цапфы
LOAD220	KP2N-20	Литиево-кальциевая смазка на основе минерального масла	Опорные ролики с цапфой и без цапфы
MULTI3	KP3K-30	Литиевая смазка на основе минерального масла	Направляющие ролики с цапфой и без цапфы с шариками в качестве тел качения

Смазывание дорожки качения сопряженной детали

Для смазывания дорожки качения могут использоваться все применяемые для подшипников качения смазочные материалы. Существуют, однако, применения, в которых дорожка качения сопряженной детали должна оставаться несмазанной.

Если смазывание места контакта невозможно, следует учитывать присутствие износа, в особенности при высоких нагрузках и скоростях.

Смазочные масла

При смазывании маслом рекомендуется применять масла CLP согласно DIN 51517.

Консистентные смазки

При смазывании консистентными смазками следует применять литиевые смазки согласно DIN 51825. Интервалы повторных смазываний могут быть определены только в условиях реальной эксплуатации.

Повторное смазывание следует производить не позднее появления первых признаков трибокоррозии, распознаваемой по красноватой окраске дорожки качения сопряженной детали или наружного кольца.

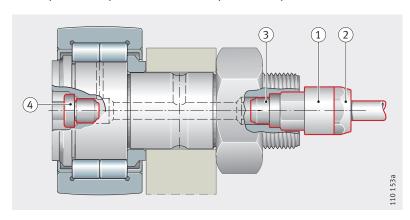
Твердые смазки, смазочные лаки

Данные смазочные материалы пригодны для смазывания. Однако, при высоких скоростях перемещения ролика или высоких частотах вращения их срок службы существенно ниже, чем у масел и консистентных смазок.

Адаптер для подключения опорных роликов с цапфой к централизованной системе смазки

Если предполагается подключение к централизованной системе смазки, для серийно изготавливаемых цапф опорных роликов, имеющих внутренний шестигранник с обеих сторон, можно применять защищенный патентом адаптер для подключения к централизованной системе смазки, рис. 9. Этот адаптер состоит из присоединительного переходника с шестигранником и цанги быстрого присоединения трубки.

Адаптер присоединяется к цапфе с одной стороны через цилиндрический переходник вместо пресс-масленки. Шестигранник фиксирует адаптер от проворачивания. Выход смазочного канала с другой стороны цапфы закрывает прилагаемая к ролику пресс-масленка, рис. 9.


Адаптер имеет внутреннюю резьбу $M10 \times 1$. В нее ввернута и герметизирована цанга быстрого присоединения трубки. Цанга надежно удерживает и пластмассовую трубку. Таким образом, трубку и адаптер не нужно соединять с помощью резьбы.

Размеры адаптера см. в табл. и на рис. 10, стр. 952.

- ① адаптер с внутренней резьбой $M10 \times 1$
- (2) цанга быстрого присоединения (3) цилиндрический переходник
 - ④ пресс-масленка

Рисунок 9 Адаптер подключения к централизованной системе смазки и пресс-масленка

Размеры адаптера

Адаптер подключения к централизованной системе смазки Условное обозначение	W	L	l ₁	l ₂	l ₃	Для полиамидных трубок DIN 73 378 $d_1 \times s_{\text{номинальный}}^{1)}$
AP8	8	27	16	22	4	4×0,75
AP10	10	27	15	22	5	4×0,75
AP14	14	25	8	20	6	4×0,75

¹⁾ Предпочтительно применение трубок из жесткого полиамида. Следует учитывать диапазон применения согласно DIN 73 378 и данные производителя.

Максимальное избыточное давление для трубок из PA 11/12 при +23 °C:

от 31 бар до 62 бар.

Максимальное избыточное давление при использовании других ввертываемых соединений: 80 бар.

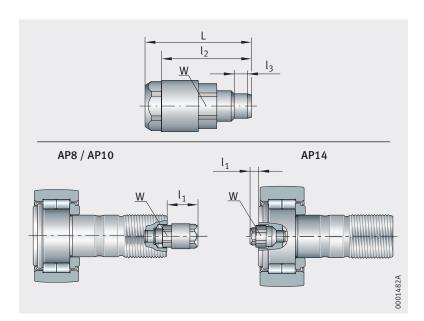
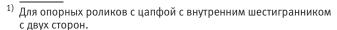


Рисунок 10 Размеры адаптера для подключения к централизованной системе смазки


Упрощенный расчет интервала до повторного смазывания

В таблице «Количество смазки для повторного смазывания опорных роликов с цапфой» приведено количество полужидкого смазочного материала, подаваемого в ролик при централизованном смазывании и его пересчет в количество смазочных импульсов для дозирующих пресс-масленок стандартных типоразмеров.

Данные действительны для литиевой полужидкой смазки с противозадирными (EP) присадками на основе минерального масла с вязкостью от ISO-VG 100 до ISO-VG 220 классов консистентности NLGI 00 или 000.

Количество смазки для повторного смазывания опорных роликов с цапфой

Конструктивный ряд ¹⁾	Наружный диаметр	Адаптер подключения к централи- зованной системе смазки	Количество смазки для повторного смазывания	Число смазочн импульо для дозирук пресс-м размера	сов ощей асленки
	D mm	Условное обозначение	Γ ²⁾	30 mm ³	50 мм ³
NUKR, NUKRE	35 и 40	AP8	1,1	40	24
	47 и 52	AP10	2,4	89	53
	от 62 до 90	AP14	7,3	271	163
KR, KRE	35 и 40	AP8	1,2	44	27
	47 и 52	AP10	1,6	60	36
	от 62 до 90	AP14	6	222	133
KRV, KRVE	35 и 40	AP8	0,7	26	16
	47 и 52	AP10	1	37	22
	от 62 до 90	AP14	3,2	120	72

²⁾ Количество смазочного материала и интервалы повторных смазываний при централизованной подаче полужидкой смазки для большинства применений. Следует учитывать емкость подводящего трубопровода!

Периодичность смазывания

Приблизительную периодичность смазывания при односменной эксплуатации для большинства нагрузок демонстрирует табл. «Периодичность смазывания, интервал до повторного смазывания». Данные действительны при односменной эксплуатации, количество смазки при повторном смазывании и интервалы — для большинства случаев применения. Данные основываются на приблизительном расчетном определении периодичности смазывания $t_{\rm fR}$. О периодичности смазывания см. главу «Смазывание», стр. 76.

В пределах этих временных интервалов следует равномерно распределить определенное по табл. «Количество смазки для повторного смазывания опорных роликов с цапфой», стр. 953, число смазочных импульсов.

Периодичность смазывания, интервал до повторного смазывания

Соотношение нагрузок	Максимальная частота вращения при эксплуатации n_{max} в % от n_{D} G			
C_{0rw}/P_r	10	25	50	100
$5 > C_{0rw}/P_r \ge 3$	¹ / ₂ -года	_	-	-
$10 > C_{0rw}/P_r \ge 5$	ежегодно	4 месяца	ежемесячно	ı
$C_{0rw}/P_r \ge 10$	ежегодно	8 месяцев	2 месяца	14 дней

Периодичность при односменной эксплуатации

Месяцы	Недели	Рабочие дни	Рабочие часы
1/2	2	10	80
1	4	20	160
2	8	40	320
4	16	80	640
6	24	120	960
8	32	160	1 280
12	48	240	1 920

Монтаж адаптера подключения к централизованной системе смазки Монтаж адаптера производится на смонтированном ролике с цапфой. Неиспользуемое смазочное отверстие в цапфе следует заглушить прилагаемой к ролику пресс-масленкой.

Следует использовать только входящие в комплект поставки пресс-масленки.

Адаптер предпочтительнее запрессовать в свободное отверстие цапфы с внутренним шестигранником небольшим равномерным усилием с помощью ручного рычажного пресса, или осторожно легкими ударами, используя молоток с пластмассовым бойком. При этом следует соблюдать глубину запрессовки l_3 и положение шестигранника, рис. 10 и табл. «Размеры адаптера», стр. 952.

Пластмассовую трубку следует обрезать под прямым углом и вставить в цангу до упора.

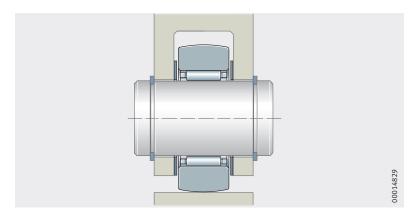
Допускается использование только полиамидной трубки согласно DIN 73 378. Следует проконтролировать посадку трубки. Следует соблюдать требования по максимальному давлению, максимальной температуре и минимальному радиусу изгиба трубки. Длина трубки до распределителя не должна быть более 1 м.

Сопрягаемая конструкция для опорных роликов

Для опорных роликов без внутреннего кольца дорожка качения на оси должна быть закалена и обработана шлифованием, см. табл. Твердость поверхности должна составлять 670 HV + 170 HV при достаточной глубине закалки CHD или SHD.

Допуски и качество обработки поверхности дорожки качения на оси

Допуск диаметра оси		Допуск шероховатости	Допуск круглости	Допуск параллельности
Без внутреннего кольца	С внутренним кольцом	макс.	макс.	макс.
k5	g6 (при местном нагружении)	R _a 0,4 (R _z 2)	25% допуска диаметра	50% допуска диаметра


Закрепление опорных роликов без осевого центрирования

У подшипников-роликов без осевого центрирования наружное кольцо и комплект роликов с сепаратором следует центрировать по боковым поверхностям, рис. 11.

Боковые упорные поверхности для центрирования наружных колец должны иметь тонкую обработку, выполняться износостойкими и смазываться (рекомендуется R_a2).

Опорные ролики без осевого центрирования являются разъемными.

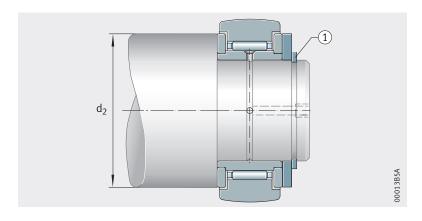
Наружное кольцо и комплект игольчатых роликов с сепаратором подобраны друг к другу, замена их аналогичными деталями подшипников равного размера при монтаже не допускается. Размеры внутренних колец согласованы с допуском диаметра прилегающей окружности F6 и в пределах своего класса точности взаимозаменяемы.

RSTO

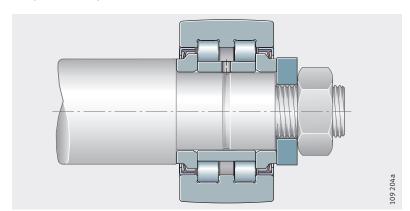
Рисунок 11 Осевое центрирование наружного кольца и сепаратора с игольчатыми роликами

Закрепление опорных роликов с осевым центрированием

Опорные ролики с осевым центрированием должны быть жестко зафиксированы в осевом направлении.


При осевых нагрузках необходимо обеспечить опору в осевом направлении для упорных шайб. При этом следует соблюдать размер d_2 , указанный в таблицах размеров, рис. 12.

Опорные ролики NATR и NATV могут быть зафиксированы такими стандартными крепежными элементами, как пружинные стопорные кольца, рис. 12.


NATR

① пружинное стопорное кольцо d₂ = диаметр опорной поверхности

> Рисунок 12 Закрепление пружинным стопорным кольцом

У роликов NNTR..-2ZL, NUTR, PWTR..-2RS внутренние кольца и кольца с бортами следует жестко фиксировать в осевом направлении, рис. 13.

PWTR..-2RS

Рисунок 13 Закрепление внутреннего кольца, а также колец с бортами

Сопрягаемая конструкция для опорных роликов с цапфой

Допуск отверстия H7 обеспечивает посадку с зазором, поскольку допуск диаметра хвостовика цапфы без эксцентрика h7, с эксцентриком – h9.

Боковые опорные поверхности для опорных роликов с цапфой должны быть плоскими, перпендикулярными и достаточно высокими. Прочность опорной поверхности гайки должна быть достаточно высокой. Выполнять опорные поверхности меньшими размера d_2 , приведенного в таблицах размеров, не допускается. Монтажная фаска на установочном отверстии не должна превышать $0.5 \times 45^\circ$.

Осевое закрепление

Опорные ролики с цапфой должны быть зафиксированы в осевом направлении с помощью шестигранной гайки. Гайки класса прочности 8 по ISO 4 032 (М6, М8), ISO 8 673 не входят в объем поставки. Их следует заказывать отдельно.

При сильных вибрациях для фиксации опорных роликов с цапфами могут применяться самостопорящиеся гайки по DIN 985 или специальные рифленые стопорные шайбы.

В случае самостопорящихся гаек следует учитывать увеличенный момент затяжки. Следует придерживаться указаний производителя гаек.

Положение смазочного отверстия

Положение радиального смазочного отверстия обозначено на торце цапфы со стороны ролика, *puc. 14*. Отверстие не должно находиться в нагруженной зоне.

NUKR

(1) метка

Рисунок 14 Положение смазочного отверстия

Проектирование дорожки качения сопрягаемой детали

При проектировании дорожки качения сопрягаемой детали (материал и прочность, термообработка, качество обработки поверхности) следует учитывать контактное напряжение рн. Оно зависит от нагрузки, геометрии контакта (точечный или линейный контакт) и модулей упругости материалов.

Номограмма

Контактное напряжение по Герцу можно определить или рассчитать по номограмме, рис. 16, стр. 959. Номограмма действительна для дорожек качения из стали. В случае других материалов следует учитывать поправочный коэффициент k, см. табл. «Поправочный коэффициент k», стр. 960.

Также предполагаются:

- точечный контакт;
- радиус профиля наружного кольца R = 500; для R > 500 см. стр. 960;
- профиль дорожки качения сопряженной детали в направлении оси ролика прямой;
- знак (плюс, минус) в соответствии с рис. 15.

Пример

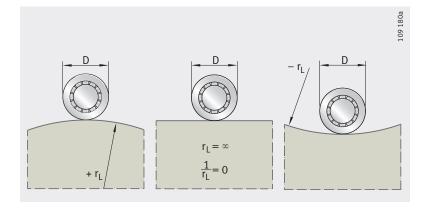
- Опорный ролик с цапфой NUKR35 с оптимизированным профилем INA, D = 35 мм;
- ширина наружного кольца С = 18 мм;
- **п** радиальная нагрузка $F_r = 2500 \text{ H}$;
- \blacksquare дисковый кулачок с радиусом $r_1 = 80$ мм.

Эквивалентная кривизна

$$\frac{1}{r_1} + \frac{2}{D} = \frac{1}{80} + \frac{2}{35} = 0.07 \,\text{mm}^{-1}$$

p_{H500}

$$= 1250 \text{ H/mm}^2$$


 $p_{H \, \text{ont.} \, \text{профиль INA}} \approx 1250 \, \, \text{H/mm}^2 \cdot k_{\text{pH}}$

 $= 1250 \,\mathrm{H/mm^2 \cdot 0.85}$

 $= 1063 \, \text{H/mm}^2$ $(1.025 \text{ H/мм}^2 \text{ согласно расчету в Bearinx}^{\text{®}}),$ k_{PH} см. на стр. 960.

D = наружный диаметр ролика r_I = радиус дорожки качения

> Рисунок 15 Радиусы дорожек качения и их знаки

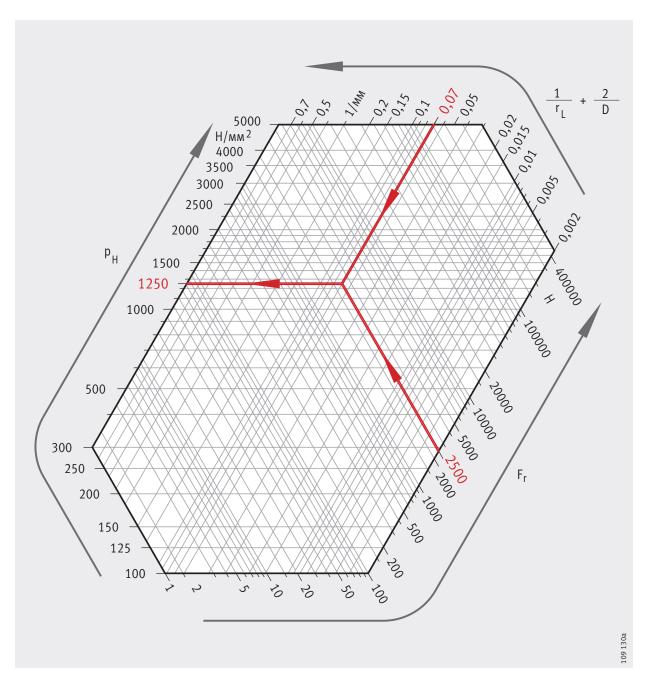


Рисунок 16 Номограмма для определения контактных напряжений; пример расчета показан красным цветом

Ролики с оптимизированным профилем INA

Для оптимизированного профиля INA обеспечивается нахождение достаточно точных значений контактных напряжений при расчете по нижеследующей формуле, k_{pH} – см. по табл.:

$$p_{H \text{ опт. профили INA}} \approx k_{pH} \cdot p_{H500}$$

Коэффициент контактного напряжения k_{pH}

Ширина наружного кольца С мм	Коэффициент контактного напряжения ${\sf k}_{\sf pH}$
от 10 до 15	1
свыше 15 до 20	0,85
свыше 20 до 30	0,83
свыше 30 до 35	0,8

Радиус профиля R > 500

Для R > 500 мм действительно:

$$p_{HR} = p_{H500} \cdot \left(\frac{500}{R}\right)^{0,185}$$

Материалы дорожек качения

Дорожка на сопряженной детали при качении ролика подвергается высоким нагрузкам.

Вследствие этого возникают высокие контактные напряжения. Прочность и поверхностная твердость материала должны быть согласованы с этой нагрузкой.

Для изготовления высоко нагружаемых дорожек качения рекомендуется использовать стали сквозной закалки, цементируемые стали и стали для газопламенной или индукционной закалки. Для низко нагруженных дорожек качения могут применяться конструкционные стали, стальное литье или литье из серого чугуна, см. табл.

$$p_H = k \cdot p_H (сталь / сталь)$$

Поправочный коэффициент k

Материал	Номер материала	Поправочный коэффициент для дорожки качения сопряженной детали при		
		точечном контакте	линейном контакте	
GG-20	0.6020	0,74	0,8	
GG-30	0.6030	0,81	0,85	
GG-40	_	0,85	0,88	
GGG-40	0.7040	0,92	0,94	
GGG-60	0.7060	0,94	0,96	
GGG-80	0.7080	0,96	0,97	

Ориентировочные значения допустимых контактных напряжений по Герцу

В таблице «Материалы и ориентировочные значения допустимых контактных напряжений по Герцу» содержится перечень материалов с характерными для них значениями допустимых контактных напряжений. Значения были определены на опытных образцах сталей, при этом было достигнуто 10⁷ циклов нагружений.

По аналогии с расчетом грузоподъемности подшипников качения действительно:

- р_{Н stat} при преимущественной статической нагрузке;
- р_{Н dyn} при преимущественной динамической нагрузке.

Материалы и ориентировочные значения допустимых контактных напряжений по Герцу

Материал		Номер материала	Контактное напряжение по Герцу		Предел текучести материала
			p _{H stat} H/mm ²	p _{H dyn} H/mm ²	R _{p0,2} H/mm ²
Серый чугун	GG-15	0.6015	850	340	120
	GG-20	0.6020	1 050	420	150
	GG-25	0.6025	1 200	480	190
	GG-30	0.6030	1 350	540	220
	GG-35	0.6035	1 450	580	250
	GG-40	_	1 500	600	280
Модифициро- ванный чугун с шаровидным графитом	GGG-40	0.7040	1 000	490	250
	GGG-50	0.7050	1150	560	320
	GGG-60	0.7060	1 400	680	380
	GGG-70	0.7070	1 5 5 0	750	440
	GGG-80	0.7080	1 650	800	500
Стальное литье	GS-38	1.0420	780	380	200
	GS-45	1.0446	920	450	230
	GS-52	1.0552	1 050	510	260
	GS-60	1.0558	1 250	600	300
	GS-62	_	1 300	630	350
	GS-70	_	1 450	700	420
Конструкционная сталь	St 37-2	1.0037	690	340	235
	St 44-2	1.0044	860	420	275
	St 52-3	1.0570	980	480	355
Улучшенная сталь	C 45 V	1.0503	1 400	670	500
	Cf 53 V	1.1213	1 450	710	520
	Cf 56 V	-	1 550	760	550
	C 60 V	1.0601	1 600	780	580
	46 Cr 2 V	1.7006	1 750	850	650
	42 CrMo 4 V	1.7225	2 000	980	900
	50 CrV 4 V	1.8159	2 000	980	900
Закаленная сталь	100 Cr 6 H	1.3505	4 000	1 500	1 900
	16 MnCr 5 E	1.7131	4 000	1 500	770
	Cf 53 Hl	1.1213	4 000	1 500	730
	Cf 56 Hl	_	4 000	1 500	760

Закаляемые материалы

Могут применяться следующие материалы со степенью чистоты, соответствующей высокосортным конструкционным сталям:

- стали сквозной закалки согласно ISO 683-17, например 100Cr6. В особых случаях для них возможна также закалка поверхностного слоя;
- цементируемые стали согласно ISO 683-17, такие, как 17MnCr5 или EN 10 084 – 16MnCr5. В данном случае наряду с закаливаемостью следует учитывать прочность зерна. При закалке цементацией требуется мелкокристаллическая закаливаемая структура и глубина цементации CHD согласно приведенной ниже формуле;
- стали для газопламенной или индукционной закалки согласно ISO 683-17, такие, как Cf54 или по DIN 17 212 - Cf53. В случае газопламенной и индукционной закалки должны быть подвержены закалке только части машин, находящиеся под нагрузкой в качестве дорожек качения. Улучшение материала должно быть произведено еще до закалки. Глубина закалки SHD определяется по приведенной ниже формуле.

Термообработка дорожки качения сопрягаемой детали Для закаленных дорожек качения действительны требования:

- твердость поверхностного слоя 670 HV + 170 HV;
- CHD, SHD согласно формулам, стр. 962,
 - согласно DIN 50 190 это глубина закаленного поверхностного слоя, в котором твердость материала не ниже 550 HV;
- графики твердости по рис. 17 и рис. 18, стр. 963;
- глубина закалки ≥ 0,3 мм.

За базу для приводимых формул взяты закономерности изменения твердости, достигаемые при квалифицированно выполненной термообработке в обычных условиях.

Цементация:

CHD
$$\geq$$
 2,73·10⁻⁵ · $\frac{p_H}{\left(\frac{1}{r_L} + \frac{2}{D}\right)}$

Индукционная и газопламенная закалка:

$$SHD \ge 10^{-5} \cdot \underbrace{\left(4, 4 \cdot \frac{p_H^2}{R_{p0,2}} - 3, 5 \cdot p_H\right)}_{\left(\frac{1}{r_L} + \frac{2}{D}\right)}$$

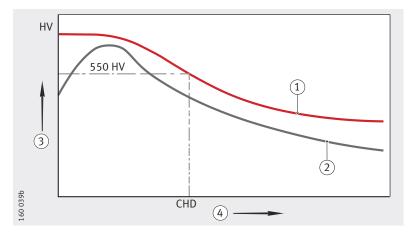
 H/MM^2 p_H

максимальное контактное напряжение по Герцу;

CHD

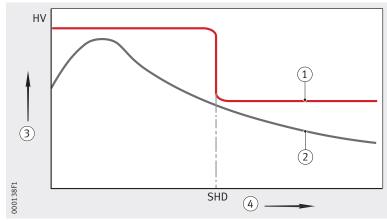
глубина закалки цементацией; SHD

глубина закалки;


D

наружный диаметр подшипника-ролика;

 H/MM^2


предел текучести материала сопряжен. дорожки качения, см табл., стр. 961;

радиус дорожки качения сопряженной детали; профиль дорожки качения в направлении оси опорного ролика – прямой, рис. 15, стр. 958.

(1) закалка цементацией ② требуемая твердость ③ твердость (4) расстояние от поверхности CHD = глубина цементации с твердостью 550 HV

Рисунок 17 Глубина цементации CHD, график твердости

(1) газопламенная или индукционная закалка ② требуемая твердость (3) твердость (4) расстояние от поверхности SHD = глубина закалки

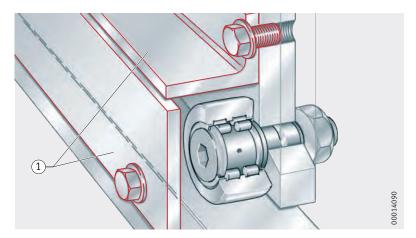
Рисунок 18 Глубина закалки SHD, график твердости

Накладные направляющие INA в качестве дорожки качения сопрягаемой детали

Накладные направляющие представляют собой готовые к монтажу детали из программы INA для линейных перемещений.

Они имеют адаптированный к направляющим роликам и опорным роликам с цапфой и без цапфы класс точности Q20 и соответствующие размеры стандартного профиля:

- допуск параллельности 20 мкм/м;
- шероховатость поверхности R_a0,8;
- твердость от 58 HRC до 62 HRC;
- перекос (непараллельность) между дорожками качения не более 1 мрад (1 мкм/мм);
- предельные отклонения поперечного сечения направляющей +0,015/+0,05;
- допуск длины цельного рельса +1 мм/м.



Опорные ролики Опорные ролики с цапфой

Защита дорожки качения сопрягаемой детали

Дорожку качения сопрягаемой детали следует защищать от загрязнений. В случае необходимости, перед роликом следует разместить щитки и скребки, например, из войлока, *puc.* 19.

(1) щитки

Рисунок 19 Защита дорожки качения сопрягаемой детали от загрязнений

Монтаж

Подшипники-ролики являются прецизионными деталями машин и механизмов. Эти изделия требуют бережного обращения перед монтажом и в процессе монтажа. Их безотказное вращение зависит, в том числе, и от тщательности монтажа.

Ролики должны быть защищены от пыли, грязи и влаги. Загрязнения негативно отражаются на качестве работы и сроке службы подшипников.

Не следует подвергать подшипники воздействию низких температур. Конденсат может привести к возникновению коррозии внутри подшипника и на посадочных поверхностях.

Опорные ролики RSTO и STO являются разъемными. Наружное кольцо и сепаратор с игольчатыми роликами подобраны друг к другу, замена их аналогичными деталями от других подшипников равного размера при монтаже не допускается.

Место монтажа должно быть чистым и свободным от пыли.

Посадочную поверхность на оси следует проверить на точность размеров, формы и расположения, при необходимости, удалить загрязнения.

Посадочные поверхности колец подшипника следует слегка смазать маслом или нанести на них твердую смазку.

После монтажа подшипники нужно смазать. В завершение, следует провести проверку работоспособности подшипниковой опоры.

Инструменты для монтажа

В зависимости от области применения для монтажа применяются:

- индукционные нагревательные приборы; следует соблюдать указания производителя в отношении консистентной смазки и уплотнений;
- регулируемые термостатом нагревательные и конвекционные шкафы; нагрев до +80 °С;
- механические или гидравлические прессы; следует использовать монтажные оправки, прилегающие к торцовой поверхности колец подшипника по всей окружности;
- молотки и оправки; наносить удары следует только по центру оправки.

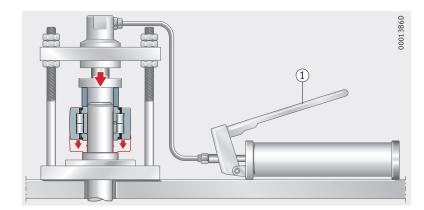
Не допускается передача монтажных усилий через тела качения. Следует категорически избегать ударов непосредственно по кольцам подшипника, не допускать повреждения уплотнений.

Указания по демонтажу

Возможность будущего демонтажа следует предусмотреть уже при проектировании подшипниковой опоры.

В том случае, если предполагается дальнейшее использование подшипника, следует:

- избегать прямых ударов по кольцам подшипника;
- избегать передачи усилий через тела качения;
- промывку подшипника производить после демонтажа;
- не применять открытое пламя.

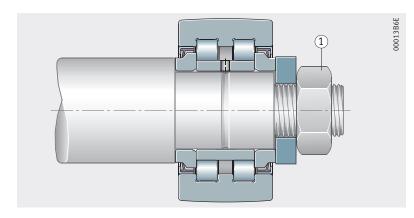


Опорные ролики Опорные ролики с цапфой

Монтаж и демонтаж опорных роликов При неблагоприятном расположении полей допусков опорный ролик следует напрессовывать на ось с помощью монтажного пресса, рис. 20. При этом внутреннее кольцо монтируется таким образом, чтобы усилие запрессовки равномерно распределялось по торцовой поверхности внутреннего кольца.

Смазочное отверстие

Следует устанавливать подшипник таким образом, чтобы смазочное отверстие находилось в ненагруженной зоне. Для опорных роликов PWTR и NNTR не требуется соблюдение строго определенного положения смазочного отверстия.


NUTR

(1) пресс для монтажа

Рисунок 20 Монтаж опорного ролика при помощи пресса

Осевое закрепление

Опорные ролики NUTR, PWTR и NNTR следует фиксировать в осевом направлении, рис. 21.

PWTR..-2RS

① шестигранная гайка

Рисунок 21 Осевое закрепление

Монтаж и демонтаж опорных роликов с цапфой

По возможности, опорные ролики с цапфой следует монтировать при помощи пресса для монтажа (аналогично *puc. 20*, стр. 966).

Следует категорически избегать ударов по упорной шайбе цапфы.

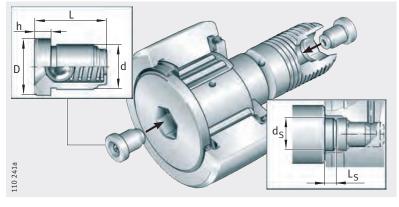
Положение радиального смазочного отверстия обозначено на торце цапфы со стороны ролика. Отверстие не должно располагаться в нагруженной зоне, *puc.* 14, стр. 957.

Пресс-масленка для опорных роликов с цапфой

К опорным роликам с цапфой в комплекте прилагаются пресс-масленки, которые до монтажа подшипника-ролика должны быть квалифицированно запрессованы в цапфу, рис. 22.

Касательно смазывания опорных роликов с цапфой с помощью адаптера подключения к централизованной системе смазки см. *puc. 9*, стр. 951.

Разрешается применять только пресс-масленки, прилагаемые к ролику в комплекте, см. табл.


Если предусматривается подвод смазки через установочное отверстие корпуса, то осевые смазочные каналы в цапфе перед монтажом следует заглушить пресс-масленками, *puc.* 22.

KR..-PP

Рисунок 22 Опорный ролик с цапфой с размерами под оправку для запрессовки пресс-масленки

Пресс-масленка

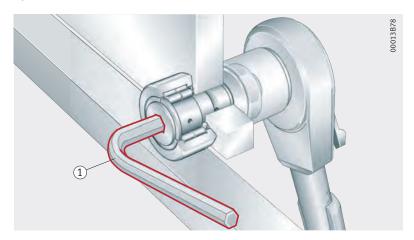
Пресс-	Размеј	ры в мм	ı				Применимы
масленка	D	d	L	h	d _s ±0,1	L _s	для роликов с наружным диаметром D
NIPA1	6	4	6	1,5 ¹⁾	_	_	16 и 19
NIPA1×4,5	4,7	4	4,5	1	4,5	5	от 22 до 32
NIPA2×7,5	7,5	6	7,5	2	7,5	6	от 35 до 52
NIPA3×9,5	10	8	9,5	3	10	9	от 62 до 90

¹⁾ Выступание пресс-масленки, см. табл. размеров.

Опорные ролики Опорные ролики с цапфой

Осевое закрепление опорных роликов с цапфой

Опорные ролики с цапфой должны быть зафиксированы в осевом направлении с помощью шестигранной гайки.


Благодаря наличию шлица или внутреннего шестигранника на торце цапфы, подшипник может быть зафиксирован во время затягивания крепежной гайки при помощи ключа, так же может быть отрегулировано положение эксцентрика, *puc. 23*.

При сильных вибрациях могут применяться самостопорящиеся гайки согласно DIN 985 или специальные рифленые стопорные шайбы.

Следует строго соблюдать моменты затяжки крепежных гаек, указанные в таблицах размеров. Только в этом случае обеспечивается передача допустимой радиальной нагрузки. Если соблюсти моменты затяжки невозможно, необходима прессовая посадка.

В случае применения самостопорящихся гаек следует учитывать увеличенный момент затяжки. Следует придерживаться указаний производителя гайки.

① торцовый шестигранный ключ

Рисунок 23 Фиксирование подшипника ключом

Опорные ролики с цапфой с эксцентриком Место самого высокого положения эксцентрика обозначено на торце цапфы со стороны ролика, *puc. 14*, стр. 957.

Ввод в эксплуатацию и повторное смазывание

Для повторного смазывания у опорных роликов с цапфой имеется по одному смазочному отверстию:

- на торце цапфы со стороны ролика;
- на торце цапфы со стороны резьбы, начиная от наружного диаметра 22 мм;
- на хвостовике цапфы;
 начиная от наружного диаметра 30 мм с дополнительной кольцевой смазочной канавкой.

Опорные ролики с цапфой с эксцентриком не могут смазываться через хвостовик цапфы. Эксцентриковое кольцо перекрывает смазочное отверстие.

Для смазывания следует использовать только ручные шприцы с коническими наконечниками, имеющими угол конуса $\leq 60^{\circ}$, рис. 24.

Перед вводом в эксплуатацию смазочные отверстия и подводящие трубки следует заполнить консистентной смазкой для защиты от коррозии, при этом одновременно может производиться смазывание.

Смазывание затруднено, если радиальное смазочное отверстие прикрыто телом качения. Поэтому смазывание следует производить на вращающемся подшипнике, достигшем рабочей температуры, остановкой и перед длительными перерывами в эксплуатации.

Для повторного смазывания следует использовать тот же сорт консистентной смазки, что и при первичном смазывании. Если это невозможно, следует проверить консистентные смазки на смешиваемость и на совместимость, см. стр. 950.

Смазывание производят до тех пор, пока в зазоре уплотнения не выступит свежая смазка. Старая смазка при этом должна иметь возможность без помех выйти из подшипника.

① конический наконечник, угол конуса $\leq 60^{\circ}$

Рисунок 24 Смазывание с помощью шприца для консистентной смазки

Опорные ролики Опорные ролики с цапфой

Защита от коррозии с помощью покрытия Corrotect[®]

Ролики зачастую подвержены воздействию агрессивных сред. В таких случаях решающим фактором для длительного срока службы подшипника является антикоррозионная защита.

В принципе, для изготовления подшипников-роликов могут использоваться коррозионностойкие стали. Но во многих случаях экономически более предпочтительным все же является использование специального покрытия Corrotect® Подробное описание покрытия приводится в главе «Защита от коррозии», стр. 119.

Corrotect[®]

Corrotect® – это предельно тонкое покрытие с толщиной слоя от 0,5 мкм до 3 мкм, наносимое на поверхность гальваническим способом.

Покрытие эффективно в условиях воздействия влажности, производственно-бытовых сточных вод, солевого тумана, слабых щелочных и слабых кислотных чистящих средств.

На опорные ролики PWTR и опорные ролики с цапфой PWKR с дополнительным обозначением RR серийно наносится не содержащее шестивалентного хрома покрытие $\operatorname{Corrotect}^{\otimes}$. Другие опорные ролики с цапфой и без цапфы с покрытием Corrotect® являются специальными исполнениями.

На рис. 25 показаны ролики с цапфой с защитным покрытием и без покрытия после испытания в солевом тумане.

Монтаж роликов, имеющих покрытие

Для уменьшения усилия запрессовки следует слегка смазать поверхности деталей. Допуски увеличены на толщину покрытия.

Перед монтажом роликов, покрытых Corrotect[®], следует проверить стойкость покрытия к агрессивным субстанциям рабочей среды.

Рисунок 25 Опорный ролик с цапфой с защитным покрытием и без после испытания в солевом тумане

Точность

Допуски размеров и точности вращения соответствуют классу точности PN согласно DIN 620, у роликов KR(E) и KRV- согласно ISO 7063.

Отличными от DIN 620 являются:

- допуск диаметра профилированной образующей поверхности 0/−0,05 мм;
- у NNTR допуск диаметра h10;
- У NATR, NATV, NUTR, PWTR..-2RS допуск ширины В h12;
- у NATR, NATV допуск круглости внутреннего кольца;
- у опорных роликов с цапфой допуск диаметра хвостовика h7, а диаметра эксцентрика h9.

У роликов PWTR..-2RS-RR и PWKR..-2RS-RR допуски увеличены на толщину специального покрытия $\operatorname{Corrotect}^{\otimes}$.

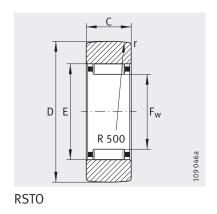
Радиальный зазор

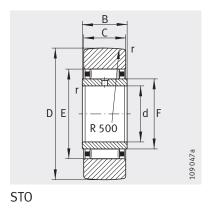
Радиальный зазор приблизительно соответствует группе зазоров C2; у роликов STO и NA22..-2RSR – группе зазоров CN согласно DIN 620-4.

Радиальный зазор

Отверст	ие	Радиал	ьный за	зор					
d MM		С2		CN		С3		С4	
свыше	до	мин.	макс.	мин.	макс.	мин.	макс.	мин.	макс.
_	24	0	25	20	45	35	60	50	75
24	30	0	25	20	45	35	60	50	75
30	40	5	30	25	50	45	70	60	85
40	50	5	35	30	60	50	80	70	100
50	65	10	40	40	70	60	90	80	110
65	80	10	45	40	75	65	100	90	125
80	100	15	50	50	85	75	110	105	140
100	120	15	55	50	90	85	125	125	165
120	140	15	60	60	105	100	145	145	190

Диаметр прилегающей окружности


У роликов RSTO и RNA22..-2RSR диаметр прилегающей окружности по игольчатым роликам F_W имеет допуск F6.


Прилегающая окружность — это окружность максимального диаметра, вписанная в реальный профиль внутренней поверхности подшипника по игольчатым роликам при их беззазорном прилегании к дорожке качения сопрягаемой конструкции.

Опорные ролики

без осевого центрирования открытые

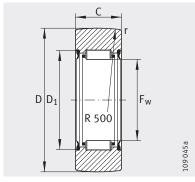
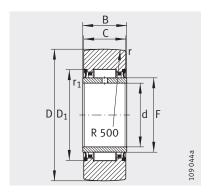


Таблица разм	еров • Р	азмеры в мм												
Без внутреннего кольца	Macca	С внутренним кольцом	Macca								Грузопод	ъемность	Нагрузка предела усталости	Частота вращения
Условное	m	Условное	m	D	d	С	В	F ¹⁾ F _w	Ε	r	дин. С _{г w}	стат. С _{0r w}	C _{urw}	n _{D G}
обозначение	≈г	обозначение	≈г					'w		мин.	H	H	Н	$мин^{-1}$
RSTO5-TV	8,5	_	-	16	_	7,8	_	7	10	0,3	2 5 5 0	2 600	330	16 000
RSTO6-TV	12,5	STO6-TV	17	19	6	9,8	10	10	13	0,3	3 7 5 0	4 5 5 0	650	10 000
RSTO8-TV	21	STO8-TV	26	24	8	9,8	10	12	15	0,3	4 200	5 500	780	8 000
RSTO10	42	ST010	49	30	10	11,8	12	14	20	0,3	8 400	9 300	1370	5 500
RSTO12	49	ST012	57	32	12	11,8	12	16	22	0,3	9 000	10 300	1530	4 500
RSTO15	50	ST015	63	35	15	11,8	12	20	26	0,3	9 1 0 0	10 900	1 640	3 300
RSTO17	88	ST017	107	40	17	15,8	16	22	29	0,3	14 200	17 900	2550	2800
RSTO20	130	ST020	152	47	20	15,8	16	25	32	0,3	16 100	21 700	3 0 5 0	2 400
RSTO25	150	ST025	177	52	25	15,8	16	30	37	0,3	16 400	23 200	3 300	1800
RSTO30	255	ST030	308	62	30	19,8	20	38	46	0,6	23 100	35 000	4700	1 300
RSTO35	375	ST035	441	72	35	19,8	20	42	50	0,6	25 000	40 500	5 400	1 100
RSTO40	420	STO40	530	80	40	19,8	20	50	58	1	23 700	39 500	5 900	850
RSTO45	453	ST045	576	85	45	19,8	20	55	63	1	25 000	43 500	5 900	750
RSTO50	481	ST050	617	90	50	19,8	20	60	68	1	25 500	46 000	6300	650

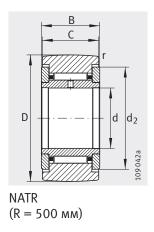

 $[\]overline{F}_{\rm W} = {\rm ди}$ аметр дорожки качения внутреннего кольца. $F_{\rm W} = {\rm ди}$ аметр прилегающей окружности с допуском F6.

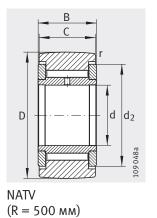
Опорные ролики

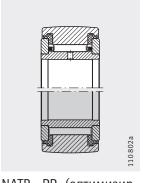
без осевого центрирования

NA22..-2RSR

Таблица размеров	• Размер	ы в мм								
Без внутреннего кольца	Macca	Размеры					Грузопод	ьемность	Нагрузка предела усталости	Частота вращения
Условное обозначение	m	D	С	F _w ¹⁾	D ₁	r	дин. С _{г w}	стат. С _{0r w}	C _{ur w}	n _{D G}
	≈r				мин.	мин.	Н	Н	Н	$мин^{-1}$
RNA22/6-2RSR	18	19	11,8	10	16	0,3	3 900	3 700	485	9 000
RNA22/8-2RSR	29	24	11,8	12	18	0,3	4800	4 300	630	7 000
RNA2200-2RSR	52	30	13,8	14	20	0,6	7 000	6 900	1 090	5 500
RNA2201-2RSR	57	32	13,8	16	22	0,6	7 500	8 300	1 270	4 700
RNA2202-2RSR	60	35	13,8	20	26	0,6	7 600	9800	1 370	3 400
RNA2203-2RSR	94	40	15,8	22	28	1	9 900	14 000	1840	3 000
RNA2204-2RSR	152	47	17,8	25	33	1	14000	19100	2 650	2 300
RNA2205-2RSR	179	52	17,8	30	38	1	14400	20 800	2 900	1 800
RNA2206-2RSR	284	62	19,8	35	43	1	17 100	26 000	3 5 5 0	1 400
RNA2207-2RSR	432	72	22,7	42	50	1,1	21 500	36 000	5 200	1 100
RNA2208-2RSR	530	80	22,7	48	57	1,1	26 000	41 000	5 300	850


Таблица размеров	Таблица размеров · Размеры в мм													
С внутренним кольцом	Macca	Разм	иеры							Грузопод	ъемность	Нагрузка предела усталости	Частота вращения	
Условное обозначение	m	$egin{array}{ c c c c c c c c c c c c c c c c c c c$								C _{urw}	n _{D G}			
	≈r		мин. мин. Н Н 19 6 11,8 12 10 16 0,3 0,3 3 900 3								Н	Н	мин ⁻¹	
NA22/6-2RSR	22	19	6	11,8	12	10	16	0,3	3 900	3 700	485	9 000		
NA22/8-2RSR	34	24	8	11,8	12	12	18	0,3	0,3	4 800	4 300	630	7 000	
NA2200-2RSR	60	30	10	13,8	14	14	20	0,6	0,3	7 000	6 900	1 090	5 500	
NA2201-2RSR	67	32	12	13,8	14	16	22	0,6	0,3	7 500	8 300	1 270	4 700	
NA2202-2RSR	75	35	15	13,8	14	20	26	0,6	0,3	7 600	9 800	1 370	3 400	
NA2203-2RSR	112	40	17	15,8	16	22	28	1	0,3	9 900	14 000	1 840	3 000	
NA2204-2RSR	177	47	20	17,8	18	25	33	1	0,3	14 000	19 100	2 650	2 300	
NA2205-2RSR	209	52	25	17,8	18	30	38	1	0,3	14 400	20 800	2 900	1 800	
NA2206-2RSR	324	62	30	19,8	20	35	43	1	0,3	17 100	26 000	3 550	1 400	
NA2207-2RSR	505	72	35	22,7	23	42	50	1,1	0,6	21 500	36 000	5 200	1 100	
NA2208-2RSR	628	80	40	22,7	23	48	57	1,1	0,6	26 000	41 000	5 300	850	
NA2210-2RSR	690	90	50	22,7	23	58	68	1,1	0,6	26 000	43 000	5 600	650	

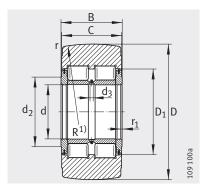

 $[\]overline{F_{W}} = \overline{\mu}_{A}$ метр дорожки качения внутреннего кольца. $F_{W} = \overline{\mu}_{A}$ диаметр прилегающей окружности с допуском F6.



Опорные ролики

с осевым центрированием щелевые уплотнения или упорные шайбы

<u>NATR..-PP</u> (оптимизир. NATV..-PP профиль INA)


Таблица разме			l I										ı
Условное обозначение ¹⁾	Macca	Условное обозначение ²⁾	Macca	Рази	иеры					Грузопод	ъемность	Нагрузка предела усталости	Частота вращения
	m		m	D	d	В	С	d ₂	r	дин.	стат.	C _{ur w}	n _{D G}
										C _{rw}	C _{Or w}		мин ⁻¹
NATR5	≈Γ	NATES DE	≈Γ	16	5	12	11	12.5	мин.	H	H	H 450	
	14	NATR5-PP	14		_	12	11	12,5	0,15	3 150	3 3 5 0	450	14 000
NATV5	15	NATV5-PP	15	16	5	12	11	12,5		4 900	6 6 0 0	950	3 8 0 0
NATR6	20	NATR6-PP	19	19	6	12	11	15	0,15	3 500	4000	540	11 000
NATV6	21	NATV6-PP	21	19	6	12	11	15	0,15	5 400	8 000	1 170	3 100
NATR8	41	NATR8-PP	38	24	8	15	14	19	0,3	5 500	6 6 0 0	930	7 5 0 0
NATV8	42	NATV8-PP	41	24	8	15	14	19	0,3	7 800	11600	1 590	2 500
NATR10	64	NATR10-PP	61	30	10	15	14	23	0,6	6 800	8 600	1 220	5 500
NATV10	65	NATV10-PP	64	30	10	15	14	23	0,6	9 500	14900	2 050	2 100
NATR12	71	NATR12-PP	66	32	12	15	14	25	0,6	7 000	9 0 0 0	1 290	4 500
NATV12	72	NATV12-PP	69	32	12	15	14	25	0,6	9 700	15 700	2 170	1 800
NATR15	104	NATR15-PP	95	35	15	19	18	27,6	0,6	9 700	14300	1 830	3 600
NATV15	109	NATV15-PP	101	35	15	19	18	27,6	0,6	12 600	23 100	3 200	1 600
NATR17	144	NATR17-PP	139	40	17	21	20	31,5	1	10 900	15800	2 090	2 900
NATV17	152	NATV17-PP	147	40	17	21	20	31,5	1	14700	26 500	3 500	1 400
NATR20	246	NATR20-PP	236	47	20	25	24	36,5	1	15 400	26 000	3 400	2 400
NATV20	254	NATV20-PP	245	47	20	25	24	36,5	1	20 300	42 000	5 900	1 300
NATR25	275	NATR25-PP	271	52	25	25	24	41,5	1	15 300	27 000	3 550	1 800
NATV25	285	NATV25-PP	281	52	25	25	24	41,5	1	20 200	44 000	6 200	1 000
NATR30	470	NATR30-PP	444	62	30	29	28	51	1	23 200	39 000	5 200	1 300
NATV30	481	NATV30-PP	468	62	30	29	28	51	1	30 000	62 000	8 800	850
_	_	NATR35-PP	547	72	35	29	28	58	1,1	24 800	44 500	5 900	1 000
-	_	NATV35-PP	630	72	35	29	28	58	1,1	32 500	71 000	10 100	750
_	_	NATR40-PP	795	80	40	32	30	66	1,1	32 000	58 000	8 300	850
_	_	NATV40-PP	832	80	40	32	30	66	1,1	40 000	88 000	13 000	650
_	_	NATR50-PP	867	90	50	32	30	76	1,1	31 000	59000	8 400	650
_	_	NATV50-PP	969	90	50	32	30	76	1,1	39 000	92 000	13 600	550

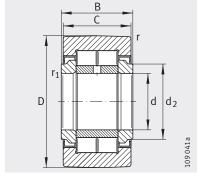
 $^{^{1)}}$ Подшипники с щелевым уплотнением и радиусом профиля наружного кольца $R=500\,\mathrm{mm}$.

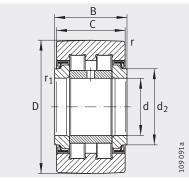
²⁾ Подшипники с пластмассовыми упорными шайбами и оптимизированным профилем INA. Допустимая рабочая температура: от –30 °C до +100 °C (в длительном режиме).

Опорные ролики

с осевым центрированием с уплотнениями

NNTR..-2ZL


Таблица размеров · Разм	иеры в ми	1									
Условное обозначение ¹⁾	Macca	Размер	Ы					Присое	единител Эы	ьные	Количество смазочных
	m	D	d	В	С	r	r ₁	d ₂	D ₁	d_3	отверстий
	≈кг	h10				мин.	мин.				
NNTR50X130X65-2ZL	5,2	130	50	65	63	3	2	63	80	3	3
NNTR55X140X70-2ZL	6,4	140	55	70	68	3	2	73	91	4	3
NNTR60X150X75-2ZL	7,8	150	60	75	73	3	2	78	97	4	3
NNTR65X160X75-2ZL	8,8	160	65	75	73	3	2	82	103	5	3
NNTR70X180X85-2ZL	13	180	70	85	83	3	2	92	115	5	3
NNTR80X200X90-2ZL	16,8	200	80	90	88	4	2	102	127	5	3
NNTR90X220X100-2ZL	22,5	220	90	100	98	4	2,5	119	146	5	3
NNTR100X240X105-2ZL	28	240	100	105	103	4	2,5	132	160	6	6
NNTR110X260X115-2ZL	35,6	260	110	115	113	4	2,5	143	174	6	6
NNTR120X290X135-2ZL	52,8	290	120	135	133	4	3	155	191	8	6
NNTR130X310X146-2ZL	65,2	310	130	146	144	5	3	165	204	8	6


Таблица размеров (продолжение)													
Условное обозначение ¹⁾	Грузоподъемно	ОСТЬ			Нагрузка предела усталости	Частота вращения							
	дин.	стат.	дин.	стат.	C _{urw}	n _{D G}							
	C _{r w}	C _{Or w}	F _{r per}	F _{Or per}									
	Н	Н	Н	Н	Н	мин ⁻¹							
NNTR50X130X65-2ZL	193 000	265 000	265 000	37 000	1 100								
NNTR55X140X70-2ZL	226 000	315 000	315 000	44 500	850								
NNTR60X150X75-2ZL	255 000	365 000	330 000	365 000	53 000	800							
NNTR65X160X75-2ZL	280 000	395 000	350 000	395 000	56 000	700							
NNTR70X180X85-2ZL	355 000	510 000	465 000	510 000	75 000	600							
NNTR80X200X90-2ZL	415 000	610 000	550 000	610 000	87 000	500							
NNTR90X220X100-2ZL	500 000	750 000	600 000	750 000	104 000	400							
NNTR100X240X105-2ZL	560 000	870 000	710 000	870 000	118 000	340							
NNTR110X260X115-2ZL	670 000	1 050 000	1 050 000	143 000	300								
NNTR120X290X135-2ZL	880 000	1 400 000	1 110 000	1 400 000	260								
NNTR130X310X146-2ZL	1010000	1 630 000	1 280 000	1 630 000	216 000	240							

Опорные ролики

с осевым центрированием с уплотнениями

NUTR (с оптимизированным профилем INA)

PWTR..-2RS (с оптимизированным профилем INA)

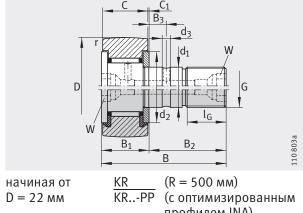

Таблица размер	ов • Р	азмеры	в мм												
Условное обозначение		Macca	Разі	иеры						Грузопо	одъемно	СТЬ		Нагрузка предела усталости	Частота вра- щения
	X-life	m	D	d	В	С	d ₂	r	r ₁	дин. С _{г w}	стат. С _{0r w}	дин. F _{r per}	стат. F _{Or per}	C _{urw}	n _{D G}
	×	≈Γ						мин.	мин.	Н	Н	Н	Н	Н	мин ⁻¹
NUTR15	_	99	35	15	19	18	20	0,6	0,3	15 300	18 700	8 500	16800	2 430	6 500
PWTR15-2RS	XL	99	35	15	19	18	20	0,6	0,3	12 600	14 600	10700	14 600	1760	6 000
NUTR17	_	147	40	17	21	20	22	1	0,5	18 700	24 900	13 000	24 900	3 1 5 0	5 500
PWTR17-2RS	XL	147	40	17	21	20	22	1	0,5	14 300	17 900	16 500	17 900	2160	5 000
NUTR1542	_	158	42	15	19	18	20	0,6	0,3	18 300	24 300	24 300	24 300	3 100	6 5 0 0
PWTR1542-2RS	XL	158	42	15	19	18	20	0,6	0,3	14700	16 200	16 200	16 200	2140	6 0 0 0
NUTR1747	_	220	47	17	21	20	22	1	0,5	21 600	30 500	30 500	30 500	3 850	5 500
PWTR1747-2RS	XL	220	47	17	21	20	22	1	0,5	15 900	18 400	18 400	18 400	2 440	5 000
NUTR20	_	245	47	20	25	24	27	1	0,5	28 500	37 500	16 200	32 500	4850	4 200
PWTR20-2RS	XL	245	47	20	25	24	27	1	0,5	24 500	30 500	20 700	30 500	3 7 5 0	3 800
NUTR2052	_	321	52	20	25	24	27	1	0,5	32 000	44 000	38 000	44 000	5 700	4 200
PWTR2052-2RS	XL	321	52	20	25	24	27	1	0,5	27 000	35 000	31 000	35 000	4 250	3 800
NUTR25	_	281	52	25	25	24	31	1	0,5	29 000	40 500	17 100	34 000	5 300	4 200
PWTR25-2RS	XL	281	52	25	25	24	31	1	0,5	25 000	33 000	21800	33 000	4 100	3 800
NUTR2562	_	450	62	25	25	24	31	1	0,5	35 500	54 000	54 000	54 000	6 900	4 200
PWTR2562-2RS	XL	450	62	25	25	24	31	1	0,5	30 000	42 500	42 500	42 500	5 200	3 800
NUTR30	_	465	62	30	29	28	38	1	0,5	40 000	55 000	23 400	46 000	7 300	2 600
PWTR30-2RS	XL	465	62	30	29	28	38	1	0,5	35 000	45 500	29 000	45 500	5 800	2 200

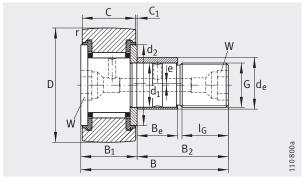
Таблица размеро	Габлица размеров (продолжение) · Размеры в мм /словное Масса Размеры Грузоподъемность Нагрузка Частота														
Условное обозначение		Macca	Разм	еры						Грузопо	дъемност	Ъ		Нагрузка предела усталости	Частота вра- щения
	0	m	D	d	В	С	d ₂	r	r ₁	дин. С _{г w}	стат. С _{0r w}	дин.	стат.	C _{urw}	n _{D G}
	X-life	≈r						мин.	мин.	H	H	F _{r per} H	F _{Or per} H	Н	мин ⁻¹
NUTR3072	_	697	72	30	29	28	38	1	0,5	48 000	70 000	68 000	70 000	9 200	2 600
PWTR3072-2RS	XL	697	72	30	29	28	38	1	0,5	41 000	56 000	54 000	56 000	7 200	2 200
NUTR35	_	630	72	35	29	28	44	1,1	0,6	45 000	65 000	31 500	63 000	8 700	2 100
PWTR35-2RS	XL	630	72	35	29	28	44	1,1	0,6	38 500	54 000	39 000	54000	6 900	1800
NUTR3580	_	836	80	35	29	28	44	1,1	0,6	51 000	78 000	76 000	78 000	10300	2 100
PWTR3580-2RS	XL	836	80	35	29	28	44	1,1	0,6	43 500	63 000	59 000	63 000	8 100	1 800
NUTR40	-	816	80	40	32	30	50,5	1,1	0,6	56 000	80 000	31 000	60 000	11 000	1 600
PWTR40-2RS	XL	816	80	40	32	30	50,5	1,1	0,6	45 000	61 000	39 500	61 000	7 900	1 500
NUTR45	-	883	85	45	32	30	55,2	1,1	0,6	56 000	83 000	32 000	62 000	11 500	1 400
PWTR45-2RS	XL	883	85	45	32	30	55,2	1,1	0,6	45 500	63 000	41 000	63 000	8 200	1 300
NUTR4090	_	1129	90	40	32	30	50,5	1,1	0,6	66 000	101 000	84 000	101 000	13 900	1 600
PWTR4090-2RS	XL	1129	90	40	32	30	50,5	1,1	0,6	52 000	75 000	67 000	75 000	9 600	1 500
NUTR50	_	950	90	50	32	30	59,8	1,1	0,6	56 000	86 000	32 500	63 000	11 900	1 300
PWTR50-2RS	XL	950	90	50	32	30	59,8	1,1	0,6	46 000	66 000	42 000	66 000	8 500	1 100
NUTR45100	-	1 396	100	45	32	30	55,2	1,1	0,6	72 000	115 000	106 000	115 000	15 800	1 400
PWTR45100-2RS	XL	1 396	100	45	32	30	55,2	1,1	0,6	56 000	85 000	85 000	85 000	10 900	1 300
NUTR50110	-	1 690	110	50	32	30	59,8	1,1	0,6	76 000	128 000	128 000	128 000	17 600	1 300
PWTR50110-2RS	XL	1 690	110	50	32	30	59,8	1,1	0,6	59 000	94 000	94 000	94 000	12 100	1 100

Игольчатые опорные ролики с цапфой

с осевым центрированием открытые или с уплотнениями

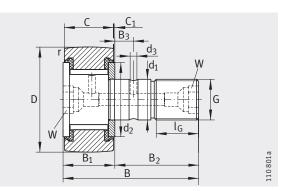
П	٦Ч	ипс	אתג
D	=	22	MM

профилем INA)


Таблица пазме	Таблица размеров · Размеры в мм													
таолица разме	Условное Масса С эксцентриком Масса Размеры													
	Macca	С эксцентриком	Macca	Разм	еры									
обозначение		Условное												
	l m	обозначение	m	D	d_1	В	B ₁	B ₂	B ₃	С	C ₁	r	d_2	d ₃
			'''		u ₁			152	3			l'	u ₂	u3
	≈r		≈Γ		h7		макс.					мин.		
KR16 ³⁾	19	_	-	16	6	28	12,2	16	_	11	0,6	0,15	12,5	_
KR16-PP ³⁾	18	KRE16-PP ³⁾	20	16	6	28	12,2	16	_	11	0,6	0,15	12,5	_
KR16-SK-PP ⁴⁾	19	-	_	16	6	28	12,2	16	_	11	0,6	0,15	12,5	-
KRV16-PP ³⁾	19	-	-	16	6	28	12,2	16	_	11	0,6	0,15	12,5	-
KR19 ³⁾	29	_	_	19	8	32	12,2	20	_	11	0,6	0,15	15	_
KR19-PP ³⁾	29	KRE19-PP ³⁾	32	19	8	32	12,2	20	-	11	0,6	0,15	15	-
KR19-SK-PP ⁴⁾	29	_	_	19	8	32	12,2	20	-	11	0,6	0,15	15	_
KRV19-PP ³⁾	31	-	-	19	8	32	12,2	20	-	11	0,6	0,15	15	-
KR22	45	_	_	22	10	36	13,2	23	-	12	0,6	0,3	17,5	_
KR22-PP	43	KRE22-PP	47	22	10	36	13,2	23	-	12	0,6	0,3	17,5	_
KRV22-PP	45	_	_	22	10	36	13,2	23	_	12	0,6	0,3	17,5	_
KR26	59	-	-	26	10	36	13,2	23	_	12	0,6	0,3	17,5	-
KR26-PP	57	KRE26-PP	62	26	10	36	13,2	23	_	12	0,6	0,3	17,5	-
KRV26-PP	59	-	-	26	10	36	13,2	23	-	12	0,6	0,3	17,5	-
KR30	92	_	_	30	12	40	15,2	25	6	14	0,6	0,6	23	3
KR30-PP	88	KRE30-PP	93	30	12	40	15,2	25	6	14	0,6	0,6	23	3
KRV30-PP	91	_	_	30	12	40	15,2	25	6	14	0,6	0,6	23	3
KR32	103	_	-	32	12	40	15,2	25	6	14	0,6	0,6	23	3
KR32-PP	98	KRE32-PP	104	32	12	40	15,2	25	6	14	0,6	0,6	23	3
KRV32-PP	101	-	-	32	12	40	15,2	25	6	14	0,6	0,6	23	3

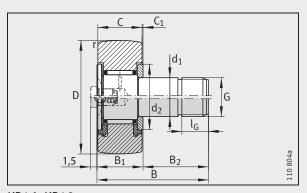
 $[\]overline{\ }$ Пресс-масленки поставляются в комплекте и не смонтированы на ролик. Допускается использовать только прилагаемые пресс-масленки.

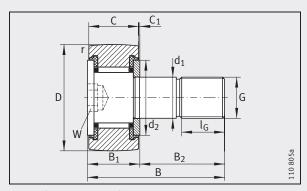
 $^{^{2)}}$ Номинальный размер внутреннего шестигранника.


 $^{^{3)}\,}$ Смазочное отверстие на торце цапфы только со стороны ролика, на торце имеется шлиц для удерживания подшипника при монтаже.

⁴⁾ Внутренний шестигранник только на торце цапфы со стороны ролика. Без возможности повторного смазывания.

начиная от D = 22 мм

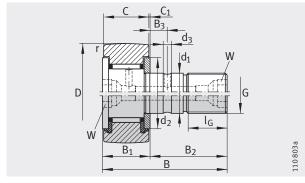

KRE..-PP (с оптимизированным профилем INA)


начиная от D = 22 мм

KRV..-PP (с оптимизированным профилем INA)

						Пресс- масленка ¹⁾	Момент затяжки гайки	Грузоподт	ьемность	Нагрузка предела усталости	Частота вращения
G	l_{G}	W ²⁾	Эксцеі	нтрик			M _A	дин.	стат.	C _{urw}	n _{D G}
			d _e h9	B _e	е		Нм	C _{r w}	C _{Or w}	Н	мин ⁻¹
M6(X1)	8	-	-	_	-	NIPA1	3	3 150	3 350	450	14 000
M6(X1)	8	-	9	7	0,5	NIPA1	3	3 150	3 350	450	14 000
M6(X1)	8	4	_	_	_	_	3	3 150	3 350	450	14 000
M6(X1)	8	-	-	-	-	NIPA1	3	4 900	6 600	950	3 800
M8(X1,25)	10	_	-	_	_	NIPA1	8	3 500	4 000	540	11 000
M8(X1,25)	10	_	11	9	0,5	NIPA1	8	3 500	4 000	540	11 000
M8(X1,25)	10	4	_	_	_	-	8	3 500	4 000	540	11 000
M8(X1,25)	10	-	-	-	-	NIPA1	8	5 400	8 000	1 170	3 100
M10X1	12	5	-	-	_	NIPA1X4,5	15	4 5 5 0	5 300	730	8 000
M10X1	12	5	13	10	0,5	NIPA1X4,5	15	4 5 5 0	5 300	730	8 000
M10X1	12	5	_	_	_	NIPA1X4,5	15	6 200	9 200	1 210	2 600
M10X1	12	5	_	_	-	NIPA1X4,5	15	5 100	6 400	840	8 000
M10X1	12	5	13	10	0,5	NIPA1X4,5	15	5 100	6 400	840	8 000
M10X1	12	5	-	-	-	NIPA1X4,5	15	7 300	11 500	1 500	2 600
M12X1,5	13	6	-	_	-	NIPA1X4,5	22	6 800	8 600	1 220	5 500
M12X1,5	13	6	15	11	0,5	NIPA1X4,5	22	6 800	8 600	1 220	5 500
M12X1,5	13	6	_	_	_	NIPA1X4,5	22	9 500	14900	2 0 5 0	2 100
M12X1,5	13	6	_	_	_	NIPA1X4,5	22	7 100	9 200	1 290	5 500
M12X1,5	13	6	15	11	0,5	NIPA1X4,5	22	7 100	9 200	1 290	5 500
M12X1,5	13	6	-	-	-	NIPA1X4,5	22	10 000	16 100	2 200	2 100

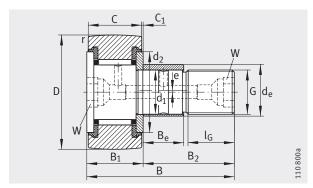
KR16, KR19 KR16-PP, KR19-PP (KRV16-PP, KRV19-PP)



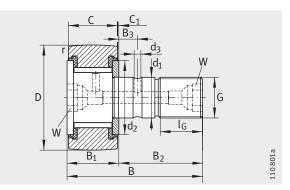
KR16-SK-PP, KR19-SK-PP

Игольчатые опорные ролики с цапфой

с осевым центрированием открытые или с уплотнениями



<u>KR</u> (R = 500 мм) (с оптимизированным профилем INA)

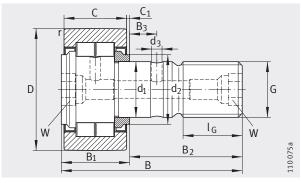

Таблица размо	еров (про	должение) · Разме												
Условное	Macca	С эксцентриком	Macca	Разме	еры									
обозначение		Условное												
	m	обозначение	m	D	d ₁	В	B ₁	B ₂	B ₃	С	C ₁	r	d ₂	d ₃
					ω ₁			2	3			ľ	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	43
	≈Γ		≈г		h7		макс.					мин.		
KR35	173	-	_	35	16	52	19,6	32,5	8	18	0,8	0,6	27,6	3
KR35-PP	164	KRE35-PP	177	35	16	52	19,6	32,5	8	18	0,8	0,6	27,6	3
KRV35-PP	166	_	_	35	16	52	19,6	32,5	8	18	0,8	0,6	27,6	3
KR40	247	-	_	40	18	58	21,6	36,5	8	20	0,8	1	31,5	3
KR40-PP	239	KRE40-PP	255	40	18	58	21,6	36,5	8	20	0,8	1	31,5	3
KRV40-PP	247	_	_	40	18	58	21,6	36,5	8	20	0,8	1	31,5	3
KR47-PP	381	KRE47-PP	400	47	20	66	25,6	40,5	9	24	0,8	1	36,5	4
KRV47-PP	390	_	_	47	20	66	25,6	40,5	9	24	0,8	1	36,5	4
KR52-PP	454	KRE52-PP	473	52	20	66	25,6	40,5	9	24	0,8	1	36,5	4
KRV52-PP	463	_	_	52	20	66	25,6	40,5	9	24	0,8	1	36,5	4
KR62-PP	770	KRE62-PP	798	62	24	80	30,6	49,5	11	29	0,8	1	44	4
KRV62-PP	787	-	_	62	24	80	30,6	49,5	11	29	0,8	1	44	4
KR72-PP	1010	KRE72-PP	1 038	72	24	80	30,6	49,5	11	29	0,8	1,1	44	4
KRV72-PP	1 027	-	_	72	24	80	30,6	49,5	11	29	0,8	1,1	44	4
KR80-PP	1 608	KRE80-PP	1 665	80	30	100	37	63	15	35	1	1,1	53	4
KRV80-PP	1 636	_	_	80	30	100	37	63	15	35	1	1,1	53	4
KR90-PP	1 975	KRE90-PP	2 032	90	30	100	37	63	15	35	1	1,1	53	4
KRV90-PP	2 003	_	-	90	30	100	37	63	15	35	1	1,1	53	4

¹⁾ Пресс-масленки поставляются в комплекте и не смонтированы на ролик. Допускается использовать только прилагаемые пресс-масленки.

²⁾ Номинальный размер внутреннего шестигранника. Применяемый адаптер для подключения к централизованной системе смазки см. на стр. 951.

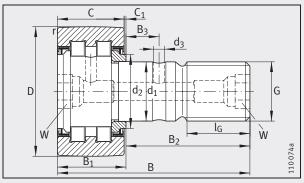
KRE..-PP (с оптимизированным профилем INA)

KRV..-PP (с оптимизированным профилем INA)

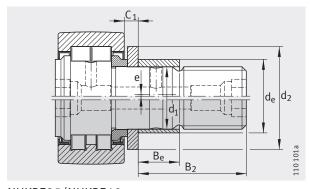

							Пресс- масленка ¹⁾	Момент затяжки гайки	Грузоподъ	емность	Нагрузка предела усталости	Частота вращения
	G	l _G	W ²⁾	Эксцен	нтрик			M _A	дин.	стат.	C _{urw}	n _{D G}
				d _e h9	B _e	е		Нм	C _{r w} H	C _{Orw}	Н	MUH^{-1}
	M16X1,5	17	8	-	-	_	NIPA2X7,5	58	9 700	14 300	1830	3 600
	M16X1,5	17	8	20	14	1	NIPA2X7,5	58	9 700	14 300	1830	3 600
	M16X1,5	17	8	-	-	-	NIPA2X7,5	58	12600	23 100	3 200	1 600
	M18X1,5	19	8	_	-	-	NIPA2X7,5	87	10 900	15 800	2 0 9 0	2 900
	M18X1,5	19	8	22	16	1	NIPA2X7,5	87	10 900	15 800	2 090	2 900
	M18X1,5	19	8	-	-	-	NIPA2X7,5	87	14700	26 500	3 500	1 400
	M20X1,5	21	10	24	18	1	NIPA2X7,5	120	15 400	26 000	3 400	2 400
	M20X1,5	21	10	_	-	-	NIPA2X7,5	120	20 300	42 000	5 900	1 300
	M20X1,5	21	10	24	18	1	NIPA2X7,5	120	16 600	29 000	3 800	2 400
	M20X1,5	21	10	_	_	_	NIPA2X7,5	120	22 300	48 000	6700	1 300
	M24X1,5	25	14	28	22	1	NIPA3X9,5	220	26 000	48 000	6800	1 900
	M24X1,5	25	14	_	_	-	NIPA3X9,5	220	33 500	75 000	11 200	1 100
	M24X1,5	25	14	28	22	1	NIPA3X9,5	220	28 000	53 000	7 200	1 900
	M24X1,5	25	14	_	_	-	NIPA3X9,5	220	36 500	85 000	12600	1 100
	M30X1,5	32	14	35	29	1,5	NIPA3X9,5	450	38 500	77 000	11 000	1 300
	M30X1,5	32	14	-	-	-	NIPA3X9,5	450	48 500	117 000	17 400	850
·	M30X1,5	32	14	35	29	1,5	NIPA3X9,5	450	40 500	83 000	11 700	1 300
	M30X1,5	32	14	-	-	-	NIPA3X9,5	450	52 000	129 000	19 000	850

Опорные ролики с цилиндрическими роликами с цапфой

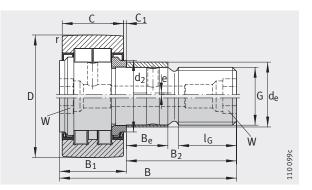
с осевым центрированием



NUKR (с оптимизированным профилем INA)

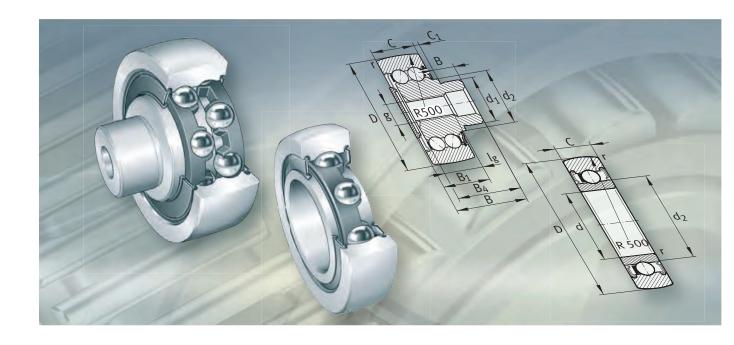

Таблица размеров · Размеры в мм															
Без эксцентрика	Macca	С эксцентриком	Macca		Разі	иеры									
Условное обозначение		Условное обозначение						1	1	1		1	1	1	
ооозначение	m	ооозначение	m	d)	D	d_1	В	B ₁	B ₂	B ₃	С	C ₁	r	d ₂	d_3
	≈Γ		≈Γ	X-life		h7		макс.					мин.		
NUKR35	164	_	-	-	35	16	52	19,6	32,5	7,8	18	0,8	0,6	20	3
-	-	NUKRE35	177	-	35	16	52	22,6	29,5	-	18	3,8	0,6	27,6	-
PWKR35-2RS	164	_	_	XL	35	16	52	19,6	32,5	7,8	18	0,8	0,6	20	3
-	-	PWKRE35-2RS	177	XL	35	16	52	22,6	29,5	_	18	3,8	0,6	27,6	_
NUKR40	242	_	_	-	40	18	58	21,6	36,5	8	20	0,8	1	22	3
-	-	NUKRE40	258	-	40	18	58	24,6	33,5	-	20	3,8	1	30	_
PWKR40-2RS	242	_	_	XL	40	18	58	21,6	36,5	8	20	0,8	1	22	3
-	-	PWKRE40-2RS	258	XL	40	18	58	24,6	33,5	_	20	3,8	1	30	_
NUKR47	380	NUKRE47	400	-	47	20	66	25,6	40,5	9	24	0,8	1	27	4
PWKR47-2RS	380	PWKRE47-2RS	400	XL	47	20	66	25,6	40,5	9	24	0,8	1	27	4
NUKR52	450	NUKRE52	470	-	52	20	66	25,6	40,5	9	24	0,8	1	31	4
PWKR52-2RS	450	PWKRE52-2RS	470	XL	52	20	66	25,6	40,5	9	24	0,8	1	31	4
NUKR62	795	NUKRE62	824	-	62	24	80	30,6	49,5	11	28	1,3	1	38	4
PWKR62-2RS	795	PWKRE62-2RS	824	XL	62	24	80	30,6	49,5	11	28	1,3	1	38	4
NUKR72	1 020	NUKRE72	1 050	-	72	24	80	30,6	49,5	11	28	1,3	1,1	44	4
PWKR72-2RS	1 020	PWKRE72-2RS	1 050	XL	72	24	80	30,6	49,5	11	28	1,3	1,1	44	4
NUKR80	1 600	NUKRE80	1 670	-	80	30	100	37	63	15	35	1	1,1	47	4
PWKR80-2RS	1 600	PWKRE80-2RS	1 670	XL	80	30	100	37	63	15	35	1	1,1	47	4
NUKR90	1 960	NUKRE90	2 0 2 0	-	90	30	100	37	63	15	35	1	1,1	47	4
PWKR90-2RS	1 960	PWKRE90-2RS	2 0 2 0	XL	90	30	100	37	63	15	35	1	1,1	47	4

 $[\]overline{\ }$ Пресс-масленки поставляются в комплекте и не смонтированы на ролик Допускается использовать только прилагаемые пресс-масленки.


 $^{^{2)}}$ Номинальный размер внутреннего шестигранника. Применяемый адаптер для подключения к централизованной системе смазки см. на стр. 951.

PWKR..-2RS (с оптимизированным профилем INA)

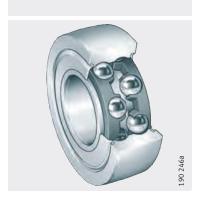
NUKRE35/NUKRE40 PWKRE35-2RS/PWKRE40-2RS (с оптимизированным профилем INA)



NUKRE PWKRE..-2RS (с оптимизированным профилем INA)

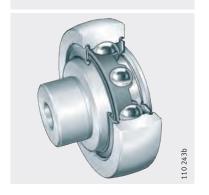
						Пресс- масленка ¹⁾	Момент затяжки гайки	Грузопод	ъемность			Нагрузка предела усталости	Частота вращения
G	l_{G}	W ²⁾	Эксь	центрі	ик		M _A	дин.	стат.	дин.	стат.	C _{urw}	n _{D G}
			d _e h9	B _e	е		Нм	C _{rw} H	C _{Or w} H	F _{r per} H	F _{0r per} H	Н	мин ⁻¹
M16X1,5	17	8	-	-	-	NIPA2X7,5	58	15 300	18 700	8 500	16 800	2 430	6 500
M16X1,5	17	8	20	12	1	NIPA2X7,5	58	15 300	18 700	8 500	16 800	2 430	6 500
M16X1,5	17	8	_	_	_	NIPA2X7,5	58	12600	14 600	10 700	14 600	1760	6 000
M16X1,5	17	8	20	12	1	NIPA2X7,5	58	12600	14 600	10 700	14 600	1760	6 000
M18X1,5	19	8	_	_	_	NIPA2X7,5	87	18 700	24 900	13 000	24 900	3 150	5 500
M18X1,5	19	8	22	14	1	NIPA2X7,5	87	18 700	24 900	13 000	24 900	3 150	5 500
M18X1,5	19	8	_	_	_	NIPA2X7,5	87	14 300	17 900	16 500	17 900	2160	5 000
M18X1,5	19	8	22	14	1	NIPA2X7,5	87	14 300	17 900	16 500	17 900	2160	5 000
M20X1,5	21	10	24	18	1	NIPA2X7,5	120	28 500	37 500	16 200	32 500	4850	4 200
M20X1,5	21	10	24	18	1	NIPA2X7,5	120	24 500	30 500	20 700	30 500	3 750	3 800
M20X1,5	21	10	24	18	1	NIPA2X7,5	120	29 000	40 500	17 100	34 000	5 300	4 200
M20X1,5	21	10	24	18	1	NIPA2X7,5	120	25 000	33 000	21 800	33 000	4100	3 800
M24X1,5	25	14	28	22	1	NIPA3X9,5	220	40 000	55 000	23 400	46 000	7 300	2 600
M24X1,5	25	14	28	22	1	NIPA3X9,5	220	35 000	45 500	29 000	45 500	5 800	2 200
M24X1,5	25	14	28	22	1	NIPA3X9,5	220	45 000	65 000	31 500	63 000	8700	2 600
M24X1,5	25	14	28	22	1	NIPA3X9,5	220	38 500	54 000	39 000	54 000	6 900	2 200
M30X1,5	32	14	35	29	1,5	NIPA3X9,5	450	69 000	104 000	47 500	95 000	14 100	1 800
M30X1,5	32	14	35	29	1,5	NIPA3X9,5	450	56 000	79 000	60 000	79 000	10600	1 800
M30X1,5	32	14	35	29	1,5	NIPA3X9,5	450	78 000	123 000	76 000	123 000	16700	1800
M30X1,5	32	14	35	29	1,5	NIPA3X9,5	450	62 000	92 000	92 000	92 000	12 200	1 800

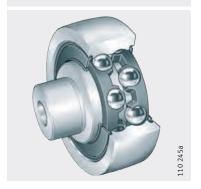
Общий обзор Направляющие ролики


Направляющие ролики

одно- или двухрядные контактные уплотнения или защитные шайбы

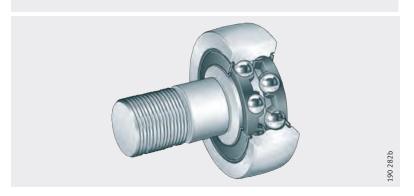
LR6, LR60, LR2


LR50, LR52, LR53


Направляющие ролики с цапфой

одно- или двухрядные контактные уплотнения или защитная шайба и крышка

ZL2..-DRS



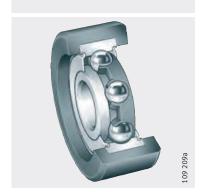
ZL52..-DRS

контактные уплотнения

KR52..-2RS

с эксцентриком защитные шайбы

ZLE52..-2Z


Направляющие ролики с оболочкой из пластмассы

Образующая поверхность наружного кольца выпуклая или цилиндрическая, контактные уплотнения или защитные шайбы

KLRU

KLRZ

Дальнейшая программа продукции

Направляющие ролики с профилированным наружным кольцом

LFR5

Основные свойства

Направляющие ролики – неразъемные одно- или двухрядные шарикоподшипники с наружным кольцом, имеющим увеличенную толщину стенок. Эти подшипники наряду с радиальными нагрузками воспринимают также и осевые силы в обоих направлениях.

Образующая поверхность наружного кольца имеет выпуклый или цилиндрический профиль. Направляющие ролики с выпуклой образующей поверхностью используются, чтобы избежать напряжений на кромках ролика, вызванных его перекосом относительно дорожки качения.

Выпускаются направляющие ролики с внутренним кольцом, с цапфой и с оболочкой из пластмассы на наружном кольце.

Профиль образующей поверхности наружного кольца

Направляющие ролики с выпуклой образующей поверхностью наружного кольца и направляющие ролики с цапфой имеют радиус профиля R = 500 мм.

Направляющие ролики с цилиндрической образующей поверхностью наружного кольца имеют дополнительное обозначение Х.

Направляющие ролики

Направляющие ролики имеют наружные кольца с выпуклой или цилиндрической образующей поверхностью, внутренние кольца и пластмассовые сепараторы с шариками. По своей конструкции они схожи с радиальными или радиально-упорными шарикоподшипниками и монтируются на ось.

Направляющие ролики LR6, LR60 и LR2 – однорядные; LR50, LR52 и LR53 – двухрядные.

Защита от коррозии

Если требуется усиленная защита от коррозии, то в качестве специального исполнения и по заказу возможна поставка направляющих роликов, имеющих специальное покрытие ${\sf Corrotect}^{\$}$, см. раздел «Защита от коррозии с помощью покрытия ${\sf Corrotect}^{\$}$ », стр. 970.

Уплотнения

Направляющие ролики с дополнительным обозначением 2RSR имеют контактные уплотнения с двух сторон. В некоторых типоразмерах для компактности установлены уплотнения RS.

Двухрядные направляющие ролики с дополнительным обозначением 2Z с двух сторон оснащены защитными шайбами, подшипники с дополнительным обозначением 2RS – с двух сторон контактными уплотнениями.

Смазывание

Направляющие ролики заполнены литиевой смазкой согласно GA13. Двухрядные направляющие ролики, отчасти, допускают смазывание через внутреннее кольцо.

Направляющие ролики с цапфой

Направляющие ролики с цапфой имеют наружные кольца с выпуклой образующей поверхностью, массивные цапфы и пластмассовые сепараторы с шариками. Они выпускаются с эксцентриком и без эксцентрика.

Для удобства монтажа цапфа имеет резьбу или резьбовое отверстие. Для удерживания подшипника при монтаже служит шлиц, внутренний шестигранник или место под ключ на наружной резьбе.

Направляющие ролики ZL2 – однорядные; ZL52, ZLE52 и KR52 – двухрядные.

Без эксцентрика

Направляющие ролики с цапфой без эксцентрика предназначены для применений, где не требуется регулирование положения образующей поверхности наружного кольца относительно дорожки качения сопрягаемой конструкции.

С эксцентриком

Направляющие ролики с цапфой ZLE52 оснащены эксцентриком. С помощью эксцентрика может быть отрегулировано положение образующей поверхности наружного кольца без зазора по отношению к дорожке качения. Это создает оптимальное геометрическое замыкание между направляющим роликом и дорожкой качения. Дополнительно это позволяет изготовить сопрягаемую конструкцию с более грубыми допусками. Кроме того, нагрузка при использовании нескольких направляющих роликов распределяется более равномерно. Для удерживания во время монтажа этот конструктивный ряд имеет место под ключ с обеих сторон цапфы.

Уплотнения

Направляющие ролики с цапфой ZL2 и ZL52 имеют контактные уплотнения со стороны цапфы и дополнительное обозначение DRS. Противоположная сторона может быть защищена прилагаемой пластмассовой крышкой.

Конструктивный ряд KR52 имеет контактные уплотнения с двух сторон и дополнительное обозначение 2RS.

Направляющие ролики с цапфой ZLE52 с двух сторон оснащены защитными шайбами и имеют дополнительное обозначение 22.

Смазывание

Направляющие ролики с цапфой заполнены консистентной смазкой на основе комплексного литиевого загустителя согласно GA13. Ролики ZLE52 могут смазываться через цапфу.

Направляющие ролики с оболочкой из пластмассы

Направляющие ролики KLRU и KLRZ состоят из однорядных радиальных шарикоподшипников с термоусаженным наружным кольцом из полиамида (РА). Полиамид выдерживает более высокие контактные напряжения, чем эластомер и относительно стоек к истиранию.

Такие ролики монтируются на ось и применяются в тех случаях, когда имеют место низкие нагрузки и особые требования к уровню шума.

Профиль образующей поверхности наружного кольца

Направляющие ролики KLRU имеют выпуклую образующую поверхность наружного кольца. Радиус профиля приведен в таблице размеров.

Конструктивный ряд KLRZ производится с цилиндрической образующей поверхностью.

Максимальная радиальная нагрузка

Максимальная радиальная нагрузка определяется допустимым контактным напряжением.

Превышать значение $F_{r per}$ не допускается.

Уплотнения

Направляющие ролики с двух сторон оснащены бесконтактными (дополнительное обозначение 2Z) или контактными (дополнительное обозначение 2RSR) уплотнениями.

Смазывание

Они заполнены литиевой консистентной смазкой согласно GA13 и повторно не смызываются.

Рабочая температура

Направляющие ролики предназначены для рабочих температур от −20 °C до +120 °C, ограниченных термическими характеристиками консистентной смазки, материала сепаратора и материала уплотнений. Следует учитывать данные касательно температур эксплуатации, приведенные в главе «Смазывание», стр. 76.

Направляющие ролики с оболочкой из пластмассы KLRU и KLRZ предназначены для рабочих температур от -20 °C до +80 °C, ограниченных термическими характеристиками консистентной смазки, материала сепаратора, уплотнений и пластмассовой оболочки.

Дополнительные обозначения

Дополнительные обозначения поставляемых исполнений приведены в табл.

Поставляемые исполнения

Дополнительное обозначение	Описание	Исполнение
DRS	Контактное уплотнение со стороны цапфы	Стандартное
RR	Специальное антикоррозионное покрытие Corrotect®	Специальное, по заказу
Χ	Цилиндрическая образующая поверхность	Стандартное
2RS	Контактные уплотнения с осевым прилеганием с двух сторон	
2RSR	Контактные уплотнения с радиальным прилеганием с двух сторон	
2Z	Защитные шайбы с двух сторон	

Дальнейшая программа продукции

Компания Schaeffler поставляет также направляющие ролики LFR5 с наружным кольцом, имеющим профиль готической (стреловидной) арки.

Такие направляющие ролики предпочтительнее всего использовать для качения по цилиндрическим линейным направляющим или по сопряженным деталям с дорожками качения круглого профиля.

Рекомендации конструктору и обеспечение надежности

Для надежной и безотказной эксплуатации направляющих роликов непременно должны быть учтены данные разделов:

- особенности функционирования опорных роликов и роликов с цапфой, см. стр. 944;
- допустимая радиальная нагрузка при динамическом и при статическом нагружении, см. стр. 944;
- грузоподъемность и долговечность, см. стр. 944;
- срок службы, см. стр. 946;
- требуемая минимальная нагрузка, см. стр. 946;
- вращение под углом к направлению движения и с перекосом, см. стр. 947;
- частоты вращения, см. стр. 948;
- смазывание, см. стр. 950.

Сопрягаемая конструкция для направляющих роликов

Опорные поверхности для подшипников должны быть плоскими и перпендикулярными. Из-за контактных напряжений они не должны иметь размер меньше, чем d_2 , см. табл. размеров.

Направляющие ролики LR могут быть жестко закреплены в осевом направлении или фиксироваться такими стандартными элементами, как пружинные стопорные кольца.

Допуск оси

Внутреннее кольцо направляющих роликов, как правило, испытывает местное нагружение. Для обеспечения достаточной опоры и исключения посадочной коррозии, допуск оси выбирается h6.

Сопрягаемая конструкция для направляющих роликов с цапфой

Опорные поверхности для направляющих роликов должны быть плоскими и перпендикулярными. Из-за контактных напряжений они не должны иметь размер меньше, чем d_2 , см. табл. размеров.

Монтажная фаска установочного отверстия не должна быть больше $0.5 \times 45^{\circ}$.

Направляющие ролики с цапфой ZL и KR должны быть жестко зафиксированы в осевом направлении.

Опорная поверхность крепежной гайки должна иметь достаточную прочность. Момент затяжки М_А крепежной гайки должен быть выдержан в соответствие с данными табл. размеров. Только в случае соблюдения момента затяжки цапфа способна передавать допустимую радиальную нагрузку.

Если соблюсти момент затяжки гайки не представляется возможным, необходима прессовая посадка цапфы.

Допуск отверстия

Возможные допуски хвостовика и отверстия см. по табл.

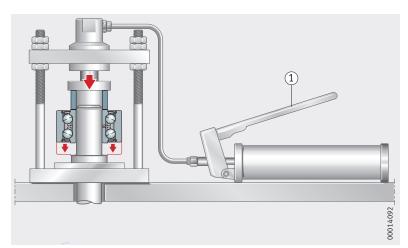
Допуски хвостовика и отверстия

Направляющие ролики	Допуск	
Конструктивный ряд	Хвостовик	Отверстие (рекомендуется)
ZL2	r6	H7
ZL52	r6	
KR52	h7	
ZLE52	h9	

Монтаж

Направляющие ролики

При неблагоприятном расположении полей допусков направляющий ролик следует напрессовывать на ось с помощью монтажного пресса, рис. 1.


При этом внутреннее кольцо монтируется таким образом, чтобы усилие запрессовки равномерно распределялось по торцовой поверхности внутреннего кольца.

Следует категорически исключить передачу усилия запрессовки через тела качения.

Следует не допускать повреждения уплотнений.

Следует фиксировать направляющий ролик в осевом направлении.

LR50, LR52, LR53

(1) пресс для монтажа

Рисунок 1 Монтаж направляющего ролика при помощи пресса

Направляющие ролики с цапфой

Монтаж и демонтаж направляющих роликов с цапфой следует производить в соответствии с указаниями для направляющих роликов, рис. 2.

Следует строго соблюдать моменты затяжки, указанные в таблицах размеров. Только в этом случае обеспечивается передача допустимой радиальной нагрузки.

Следует применять винты и гайки класса прочности 8.8 или более высокого класса прочности.

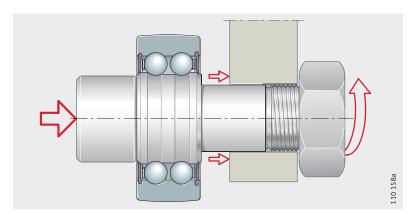


Рисунок 2 Монтаж направляющего ролика с цапфой

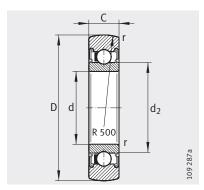
Точность

Допуски размеров и точности вращения соответствуют классу точности PN согласно DIN 620.

В отличие от предписаний DIN 620, допуск диаметра профилированного наружного кольца равен 0/-0.05 мм.

Допуск хвостовика направляющего ролика с цапфой и допуски отверстия приведены в табл., стр. 991.

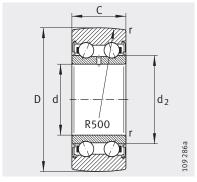
Радиальный зазор


Радиальный зазор в подшипниках соответствует группе радиальных зазоров CN согласно DIN 620-4.

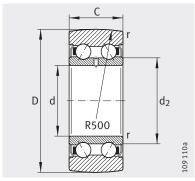
Радиальный зазор

Отверс	гие	Радиа	альный	зазор	1						
d mm		С2 мкм		CN MKM		С3 мкм		С4 мкм		С5 мкм	
свыше	до	мин.	макс.	мин.	макс.	мин.	макс.	мин.	макс.	мин.	макс.
2,5	10	0	7	2	13	8	23	14	29	20	37
10	18	0	9	3	18	11	25	18	33	25	45
18	24	0	10	5	20	13	28	20	36	28	48
24	30	1	11	5	20	13	28	23	41	30	53
30	40	1	11	6	20	15	33	28	46	40	64
40	50	1	11	6	23	18	36	30	51	45	73
50	65	1	15	8	28	23	43	38	61	55	90

однорядные с уплотнениями



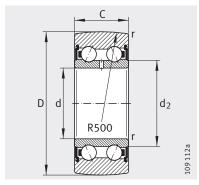
LR6..-2RSR, LR2..-2RSR, LR2..-X-2RSR¹⁾


Таблица размеров	• Размеры в	з мм								
Условное обозначение	Macca	Разме	ры				Грузоподъ	емность	Нагрузка предела усталости	Частота вращения
	m	D	d	С	d ₂	r	дин. С _{r w}	стат. С _{Orw}	C _{urw}	n _{D G}
	≈Γ					мин.	Н	Н	Н	$MИH^{-1}$
LR604-2RSR	10	13	4	4	6,1	0,2	870	350	18,1	24 000
LR605-2RSR	10	16	5	5	7,5	0,2	1 220	510	25,5	23 000
LR606-2RSR	10	19	6	6	8,7	0,3	1 840	790	39,5	22 000
LR607-2RSR	10	22	7	6	9	0,3	2 1 2 0	880	42,5	20 000
LR608-2RSR	20	24	8	7	10	0,3	2 750	1 240	63	19 000
LR6000-2RSR	20	28	10	8	14,6	0,3	4 5 5 0	2 500	128	16 000
LR6001-2RSR	30	30	12	8	16,6	0,3	4 750	2800	144	15 000
LR200-2RS	50	32	10	9	16,6	0,6	4 850	2 3 1 0	117	13 000
LR200-X-2RS ¹⁾	50	32	10	9	16,6	0,6	4 850	2 3 1 0	117	13 000
LR201-2RSR	50	35	12	10	18,3	0,6	5 600	2750	137	12 000
LR201-X-2RSR ¹⁾	50	35	12	10	18,3	0,6	5 600	2750	137	12 000
LR202-2RSR	70	40	15	11	21	0,6	6 600	3 3 5 0	170	11 000
LR202-X-2RSR ¹⁾	70	40	15	11	21	0,6	6 600	3 3 5 0	170	11 000
LR203-2RSR	110	47	17	12	24	0,6	8 500	4 450	223	9 000
LR203-X-2RSR ¹⁾	110	47	17	12	24	0,6	8 500	4 450	223	9 000
LR204-2RSR	150	52	20	14	29	1	10600	5 700	295	8 000
LR204-X-2RSR ¹⁾	150	52	20	14	29	1	10600	5 700	295	8 000
LR205-2RSR	230	62	25	15	33,5	1	12500	7 100	360	7 000
LR205-X-2RSR ¹⁾	230	62	25	15	33,5	1	12500	7 100	360	7 000
LR206-2RS	330	72	30	16	37,4	1	16600	9700	500	5 500
LR206-X-2RS ¹⁾	330	72	30	16	37,4	1	16600	9700	500	5 500
LR207-2RS	400	80	35	17	42,4	1,1	20 400	12 100	640	4 500
LR207-X-2RS ¹⁾	400	80	35	17	42,4	1,1	20 400	12 100	640	4 500
LR209-2RS	500	90	45	19	53,2	1,1	22 400	13 700	730	3 600
LR209-X-2RS ¹⁾	500	90	45	19	53,2	1,1	22 400	13 700	730	3 600

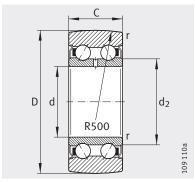
¹⁾ Направляющие ролики с цилиндрической образующей поверхностью.

двухрядные с уплотнениями

LR52..-2Z, LR52..-X-2Z¹⁾


Таблица размеров · Размеры в мм												
Условное обозначение	Macca	Размер	Ы				Грузоподъ	емность	Нагрузка предела усталости	Частота вращения		
	m	D	d	С	d ₂	r	дин. С _{г w}	стат. С _{Or w}	C _{ur w}	n _{D G}		
	≈Γ					мин.	Н	Н	Н	мин ⁻¹		
LR50/5-2RSR	10	17	5	7	8,2	0,2	1 690	940	48,5	12 000		
LR50/6-2RSR	20	19	6	9	9,3	0,3	2700	1 370	66	11 000		
LR50/7-2RSR	20	22	7	10	10,5	0,3	3 300	1 700	81	10 000		
LR50/8-2RSR ²⁾	30	24	8	11	10,5	0,3	4 300	2 390	119	10 000		
LR5000-2RS	30	28	10	12	13,5	0,3	4750	2 850	145	9 000		
LR5001-2RS	30	30	12	12	15,5	0,3	5 100	3 100	161	8 500		
LR5200-2Z	70	32	10	14	15,4	0,6	6 8 0 0	4 100	208	11 000		
LR5200-X-2Z ¹⁾	70	32	10	14	15,4	0,6	6 800	4 100	208	11 000		
LR5200-2RS	70	32	10	14	15,4	0,6	6 800	4 100	208	8 000		
LR5002-2RS	50	35	15	13	20,4	0,3	6 500	4 150	217	7 000		
LR5201-2Z	80	35	12	15,9	17,1	0,6	8 700	5 200	260	10 000		
LR5201-X-2Z ¹⁾	80	35	12	15,9	17,1	0,6	8 700	5 200	260	10 000		
LR5201-2RS	80	35	12	15,9	17,1	0,6	8 700	5 200	260	7 500		
LR5003-2RS	70	40	17	14	21,6	0,3	7 800	5 300	270	6 000		
LR5202-2Z	110	40	15	15,9	20	0,6	10 000	6 300	320	10 000		
LR5202-X-2Z ¹⁾	110	40	15	15,9	20	0,6	10 000	6 300	320	10 000		
LR5202-2RS	110	40	15	15,9	20	0,6	10 000	6 300	320	7 000		

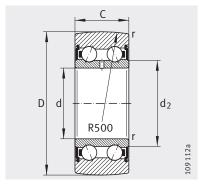
 $[\]overline{\ \ }^{1)}$ $\overline{\ \ }^{1)}$ Направляющие ролики с цилиндрической образующей поверхностью.



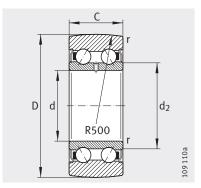
²⁾ Без смазочного отверстия.

двухрядные с уплотнениями

LR50..-2RS, LR52..-2RS, LR53..-2RS



LR52..-2Z, LR53..-2Z, LR52..-X-2Z¹⁾

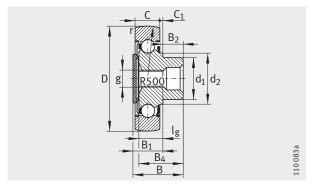

Таблица размеров	Габлица размеров (продолжение) · Размеры в мм													
Условное обозначение	Macca	Разме	ЭЫ				Грузоподъег	МНОСТЬ	Нагрузка предела усталости	Частота вращения				
	m	D	d	С	d ₂	r	дин. С _{г w}	стат. С _{0r w}	C _{urw}	n _{D G}				
	≈г					мин.	Н	Н	Н	$MИH^{-1}$				
LR5004-2RS	120	47	20	16	25,2	0,6	11700	7700	400	5 500				
LR5203-2Z	170	47	17	17,5	22,5	0,6	12800	8 400	420	7 500				
LR5203-X-2Z ¹⁾	170	47	17	17,5	22,5	0,6	12800	8 400	420	7 500				
LR5203-2RS	170	47	17	17,5	22,5	0,6	12800	8 400	420	5 500				
LR5005-2RS	150	52	25	16	29,8	0,6	11800	8 200	440	4 700				
LR5204-2Z	230	52	20	20,6	26,5	1	16100	10 700	550	7 000				
LR5204-X-2Z ¹⁾	230	52	20	20,6	26,5	1	16100	10 700	550	7 000				
LR5204-2RS	230	52	20	20,6	26,5	1	16100	10 700	550	5 000				
LR5303-2RS	210	52	17	22,2	23,5	1	17 500	11 300	560	4 700				
LR5006-2RS	250	62	30	19	35,5	1	16100	11 900	630	4 000				
LR5205-2Z	340	62	25	20,6	30,3	1	18800	13 200	670	6 500				
LR5205-X-2Z ¹⁾	340	62	25	20,6	30,3	1	18800	13 200	670	6 500				
LR5205-2RS	340	62	25	20,6	30,3	1	18800	13 200	670	4 500				
LR5304-2Z	340	62	20	22,2	29	1,1	21 500	14800	740	6 500				
LR5304-2RS	340	62	20	22,2	29	1,1	21 500	14800	740	4 500				
LR5007-2RS	300	68	35	20	41,7	1	17800	13 300	720	4 300				

 $[\]overline{\ \ \ }^{1)}$ Направляющие ролики с цилиндрической образующей поверхностью.

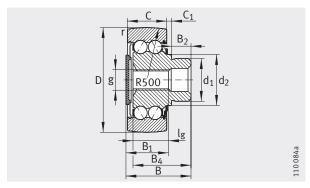
двухрядные с уплотнениями

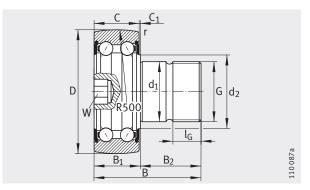
LR52..-2RS, LR53..-2RS

LR52..-2Z, LR53..-2Z, LR52..-X-2Z¹⁾


Таблица размеро	Габлица размеров (продолжение) · Размеры в мм												
Условное обозначение	Macca	Разме	ры				Грузоподъ	емность		Нагрузка предела усталости	Частота вращения		
	m ≈Γ	D	d	С	d ₂	r мин.	дин. С _{г w}	стат. С _{0r w}	F _{r per}	C _{ur w}	n _{D G}		
LR5206-2Z	510	72	30	23,8	37,4	1	25 000	18 000	_	930	5 000		
LR5206-X-2Z ¹⁾	510	72	30	23,8	37,4	1	25 000	18 000	_	930	5 000		
LR5206-2RS	510	72	30	23,8	37,4	1	25 000	18 000	_	930	3 500		
LR5305-2Z	500	72	25	25,4	34,4	1,1	28 000	19 900	_	1 000	5 500		
LR5305-2RS	500	72	25	25,4	34,4	1,1	28 000	19 900	_	1 000	3 900		
LR5207-2Z	660	80	35	27	42,4	1,1	31 000	22 800	_	1 200	3 900		
LR5207-X-2Z ¹⁾	660	80	35	27	42,4	1,1	31 000	22 800	_	1 200	3 900		
LR5207-2RS	660	80	35	27	42,4	1,1	31 000	22 800	_	1 200	2 800		
LR5306-2Z	670	80	30	30,2	41,4	1,1	35 500	25 500	_	1 330	4 300		
LR5306-2RS	670	80	30	30,2	41,4	1,1	35 500	25 500	-	1 330	3 100		
LR5208-2Z	750	85	40	30,2	48,4	1,1	35 000	26 000	21 100	1 360	3 500		
LR5208-X-2Z ¹⁾	750	85	40	30,2	48,4	1,1	35 000	26 000	21 100	1 360	3 500		
LR5208-2RS	750	85	40	30,2	48,4	1,1	35 000	26 000	21 100	1 360	2 500		
LR5307-2Z	970	90	35	34,9	47,7	1,5	44 000	32 500	-	1 670	3 600		
LR5307-2RS	970	90	35	34,9	47,7	1,5	44 000	32 500	_	1 670	2 500		
LR5308-2Z	1 200	100	40	36,5	52,4	1,5	54 000	40 500	-	2 100	3 300		
LR5308-2RS	1 200	100	40	36,5	52,4	1,5	54 000	40 500	-	2 100	2 300		

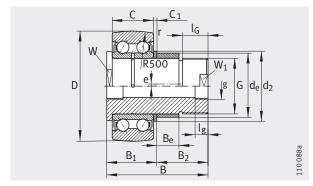
 $[\]overline{\ \ }$ Направляющие ролики с цилиндрической образующей поверхностью.


Направляющие ролики с цапфой


с уплотнениями

ZL2..-DRS

Таблица размеров · Размеры в мм												
Условное обозначение	Macca	Размеры										
	m	D	d ₁	В	B ₁	B ₂	B ₄	С	C ₁	d ₂	r	G
	≈Γ				макс.						мин.	
ZL5201-DRS	90	35	14	33,2	19,5	14	31	15,9	2,6	17,1	0,6	_
KR5201-2RS	120	35	12	49,2	17	32,5	_	15,9	0,8	17,1	0,6	M12X1,5
ZL202-DRS	80	40	16	23,8	14	10	21,5	11	2	20	0,6	-
ZL5202-DRS	120	40	16	36,2	20,5	16	34	15,9	3,5	20	0,6	-
KR5202-2RS	190	40	16	53,2	17	36,5	_	15,9	0,8	20	0,6	M16X1,5
ZL203-DRS	120	47	18	26,5	14,5	12	24,5	12	2	22,9	0,6	-
ZL5203-DRS	190	47	18	39,5	21,5	18	37,5	17,5	3,5	22,9	0,6	_
KR5203-2RS	290	47	18	58,8	18,5	40,5	-	17,5	0,8	22,9	0,6	M18X1,5
ZL204-DRS	170	52	20	30,7	17	14	28,5	14	2	26,8	1	-
ZL5204-DRS	250	52	20	45,3	25,5	20	43	20,6	4	26,8	1	-
KR5204-2RS	380	52	20	63,6	22,5	41,5	_	20,6	1,5	26,8	1	M20X1,5
ZL205-DRS	250	62	25	33,8	18	16	31	15	2	30,3	1	-
ZL5205-DRS	380	62	25	50,4	25,5	25	47,5	20,6	4	30,3	1	_
KR5205-2RS	580	62	24	70,9	21,5	49,5	_	20,6	0,8	30,3	1	M24X1,5
ZL5206-DRS	550	72	30	59	29	30	56,5	23,8	4,5	37,3	1	-
KR5206-2RS	800	72	24	74,1	25	49,5	_	23,8	0,8	37,3	1	M24X1,5
ZL5207-DRS	710	80	35	69,2	33,5	36	66,5	27	5,5	42,4	1,1	-
KR5207-2RS	1 200	80	30	91	28	63	-	27	1	42,4	1,1	M30X1,5

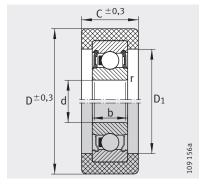

ZL52..-DRS KR52..-2RS

				Момент затяжки	Грузоподъемность		Нагрузка предела усталости	Частота вращения				
l_{G}	g	lg	W	M _A	дин. С _{г w}	стат. С _{0r w}	C _{ur w}	n _{D G}				
				Нм	Н	Н	Н	мин ⁻¹				
_	M8	14	-	_	8700	5 200	260	7 500				
17	-	_	6	45	8 700	5 200	260	7 500				
_	M8	15	_	_	6600	3 350	170	8 500				
-	M8	15	-	_	10 000	6 3 0 0	320	7 000				
19	-	_	8	70	10000	6 3 0 0	320	7 000				
-	M8	16	-	-	8 500	4 450	223	6 500				
_	M8	15	_	_	12800	8 400	420	5 500				
21	-	_	8	115	12800	8 400	420	5 500				
_	M10	18	_	_	10600	5 700	295	6 000				
-	M10	18	-	_	16100	10 700	550	5 000				
21	-	_	10	160	16100	10 700	550	5 000				
-	M10	19	_	-	12500	7 100	360	5 500				
_	M10	18	_	_	18 800	13 200	670	4 500				
25	-	_	10	290	18800	13 200	670	4 500				
-	M16	20	_	_	25 000	18 000	930	3 500				
25	-	_	10	290	25 000	18 000	930	3 500				
-	M16	20	_	-	31 000	22 800	1 200	2 800				
32	-	_	12	600	31 000	22 800	1 200	2 800				

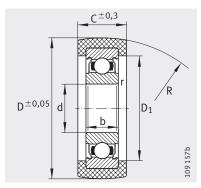
Направляющие ролики с цапфой

с эксцентриком с уплотнениями

ZLE52..-2Z

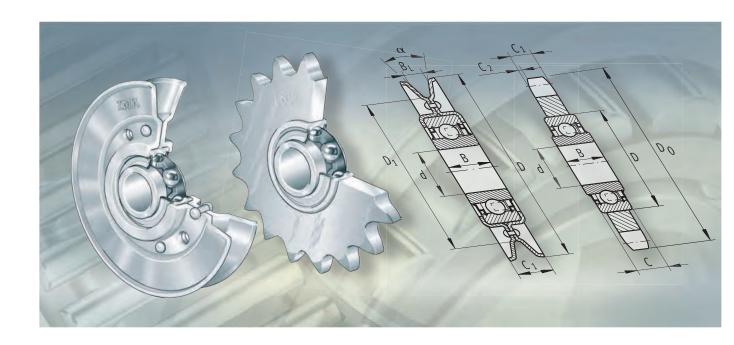

Таблица размеро	Таблица размеров · Размеры в мм												
Условное обозначение	Macca	Размері	азмеры										
	m	D	d _e	В	B ₁	B ₂	С	C ₁	d ₂	r	W	W ₁	
	≈Γ				макс.					мин.			
ZLE5201-2Z	250	35	18	65,5	20,5	45	15,9	2	25	0,6	15	9	
ZLE5202-2Z	350	40	22	66,5	21,5	45	15,9	2,5	27	0,6	17	10	
ZLE5204-2Z	460	52	24	76	26	50	20,6	2,5	30	1	22	17	
ZLE5205-2Z	640	62	24	88	32	56	20,6	8	30	1	22	17	
ZLE5207-2Z	1 300	80	35	99	35	64	27	3	45	1,1	40	27	

						Момент затяжки	Грузоподъе	МНОСТЬ	Нагрузка предела усталости	Частота вращения
e	B _e	g	lg	G	l _G	M _A	дин. С _{г w}	стат. С _{0r w}	C _{urw}	$n_{D\ G}$
					мин.	Нм	Н	Н	Н	$MИH^{-1}$
1	18	M6	6	M12X1,5	24	30	8 700	5 200	260	10 000
1	16	M8X1	8	M14	25	40	10 000	6300	320	10 000
1	18	M8X1	8	M20X1,5	29	150	16 100	10700	550	7 000
1	25	M8X1	8	M20X1,5	28	150	18 800	13 200	670	6 500
1,5	29	M8X1	8	M30X1,5	32	540	31 000	22 800	1 200	3 900



Направляющие ролики

с оболочкой из пластмассы с уплотнениями



KLRU..-2Z

Таблица размеров · Размеры в мм													
Условное обозначение	Macca	Разм	еры						Грузоподъ- емность направляющих роликов ¹⁾	Встроенный радиальный шарико- подшипник	. ' ' ' ' ' ' '		
	m	D	d	С	b	D ₁	R	r	F _{r per}		дин. С _r	стат. С _{0r}	
	≈Γ							мин.	Н		Н	Н	
KLRU08X28X11-2Z	16	27,5	8	11	7	20	500	0,3	250	608-2Z	3 200	1 250	
KLRZ10X30X10-2Z	50	30	10	10	8	24	_	0,3	250	6000-2Z	4 600	1 970	
KLRU12X35X12-2Z	30	34,8	12	12	8	26	300	0,3	340	6001-2Z	5 100	2 3 7 0	
KLRZ12X41X16-2RSR	50	41	12	16	10	29,5	_	0,6	500	6201-2RSR	7 100	3 100	
KLRU12X47X20-2Z	45	46,8	12	20	10	28,5	300	0,6	500	6201-2Z	7 100	3 100	
KLRU15X47X20-2Z	50	46,8	15	20	11	31,5	300	0,6	500	6202-2Z	7 700	3 500	

 $[\]overline{\ }$ Действительно в случае применения в качестве направляющего ролика. Значения действительны для рабочих температур не более +40 °C.

Звездочки натяжителей цепи Ролики натяжителей ремня

Общий обзор Звездочки натяжителей цепи Ролики натяжителей ремня


Звездочки натяжителей цепи

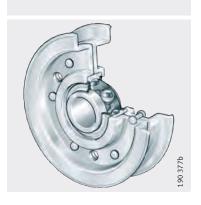
Звездочка из стали или металлокерамики

KSR..-L0

KSR..-B0

Звездочка из пластмассы

KSR..-L0..-22



Ролики натяжителей ремня

RSRA..-LO, RSRA..-KO

RSRB..-L0

RSRD..-L0

Звездочки натяжителей цепи Ролики натяжителей ремня

Основные свойства Звездочки натяжителей цепи

Звездочки INA натяжителей цепи используются в качестве направляющих и обводных элементов для втулочных и роликовых цепей. Они компенсируют возникающее в процессе эксплуатации удлинение цепи и улучшают плавность работы механизма при высоких нагрузках и скоростях.

Готовые к монтажу узлы состоят из звездочек и радиальных шарикоподшипников или закрепляемых подшипников. Звездочки изготавливаются из стали повышенной прочности, металлокерамики или пластмассы (полиамид). Звездочки из пластмассы обеспечивают повышенную плавность хода и низкий уровень шума. Поскольку внутреннее кольцо радиального шарикоподшипника расширено в обе стороны, дополнительные дистанционные кольца не требуются.

У конструктивного ряда KSR..-ВО внутреннее кольцо фиксируется на валу с помощью закрепительного кольца. Отверстия подшипников данного ряда имеют допуск «в плюс». Таким образом, при средних нагрузках и скоростях могут быть использованы необработанные валы с допуском ISO до h9.

Уплотнения

Радиальные шарикоподшипники уплотнены с двух сторон.

Смазывание

Они заполнены литиевой консистентной смазкой по GA13 и не требуют обслуживания.

Ролики натяжителей ремня

Ролики натяжителей ремня применяются для натяжения ремней в приводах и в качестве обводных роликов. Они:

- увеличивают угол обхвата шкива, способствуя передаче большей мощности или позволяя уменьшить размеры деталей;
- компенсируют удлинение ремня в процессе работы;
- позволяют сократить расстояние между осями;
- уменьшают износ ременной передачи.

Готовые к монтажу узлы состоят из штампованных профилированных стальных дисков, соединенных между собой заклепками, и радиальных шарикоподшипников. Более крупные диски дополнительно свариваются. Фаска в профиле ролика исключает повреждение ремня. Благодаря конструкции из металлического листа, дополнительные вращающиеся массы и дисбаланс невелики.

Конструктивный тип А предназначен для клиновых ремней, конструктивный тип В – для плоских, клиновых и круглых ремней, конструктивный тип D – для ремней круглого сечения, стальных и пеньковых тросов.

Уплотнения

Радиальные шарикоподшипники уплотнены с двух сторон.

Смазывание

Они заполнены литиевой консистентной смазкой по GA13 и не требуют обслуживания.

Рабочая температура

Звездочки натяжителей цепи из стали или металлокерамики предназначены для рабочих температур от −20 °C до +120 °C.

Звездочки натяжителей цепи из пластмассы предназначены для рабочих температур от −20 °C до +80 °C.

Ролики натяжителей ремня предназначены для рабочих температур от −20 °C до +120 °C, ограниченных свойствами консистентной смазки и материала уплотнений.

Звездочки натяжителей цепи Ролики натяжителей ремня

Рекомендации конструктору и обеспечение надежности Звездочки натяжителей цепи

Звездочки натяжителей цепи следует располагать только у ненагруженной ветви цепи, рис. 1.

Угол обхвата следует выбирать таким, чтобы в зацеплении одновременно находилось не менее трех зубьев звездочки.

При смазывании консистентными смазками следует использовать хорошо прилипающую смазку.

Звездочки натяжителей цепи с отверстием d = 16 мм исполнены с допусками для закрепления винтами М16.

Минимальное усилие распрессовки радиального шарикоподшипника составляет 700 Н. В процессе эксплуатации превышать это значение силы не допускается.

Натяжение ненагруженной ветви цепи не должно быть менее 1% силы тяги в ведущей ветви.

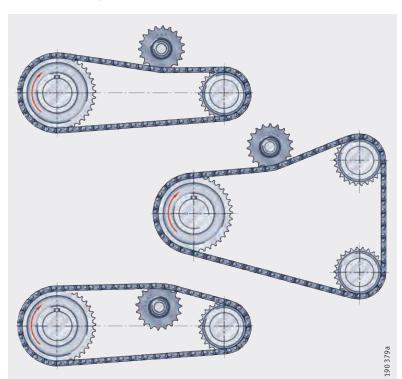


Рисунок 1 Расположение на ненагруженной ветви цепи

Индексы материалов

Материалы звездочек обозначаются с помощью индексов материала, см. табл.

Обозначение материалов

Индекс	Материал		Твердость
08	Металлокерамика	C 10	HB 50±10
09	Металлокерамика	D 39	HB 105±15
15	Сталь	St 52	-
16	Сталь	C 45	HRC 50±5 поверхность зуба закалена
22	Пластмасса	PA	-

Ролики натяжителей ремня

Ролики натяжителей ремня следует располагать только на ненагруженной ветви ременной передачи, рис. 2.

При нормальных нагрузках достаточно легкой посадки с осевой фиксацией для внутреннего кольца.

Если предусмотрено применение ролика для натяжения с внешней стороны клинового ремня, следует проверить пригодность клинового ремня для такого способа натяжения.

Превышать допустимую скорость ремня, равную 40 м/с, не разрешается.

Для каждого случая монтажа следует проверить допустимое натяжение ветви ремня и долговечность шарикоподшипника.

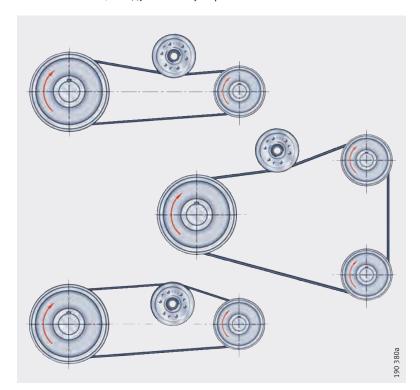
Усилие натяжения

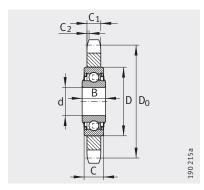
Для силы натяжения S_{ν} между валами действительно приближенное ориентировочное значение:

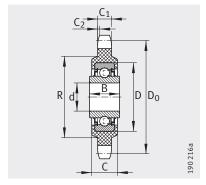
- для плоских ремней $S_v =$ от 2 до $3 \times F_{II}$ (окружная сила);
- для клиновых ремней $S_v = \text{ от 1,7 до 2,5} \times F_u$ (окружная сила).

Проверка натяжения ремня

Измерить соотношение частот вращения без нагрузки при низкой частоте вращения. Затем измерить соотношение частот вращения при рабочей частоте вращения и рабочей нагрузке. Если обусловленная проскальзыванием ремня разница составит > 2%, следует натянуть ремень.






Рисунок 2 Расположение на ненагруженной ветви ремня

Точность

Для роликов натяжителей клиновых ремней, вследствие меньшего обхвата, угол желоба несколько больше, чем рекомендовано DIN 2 211 и DIN 2 217.

Звездочки натяжителей цепи

KSR..-L0

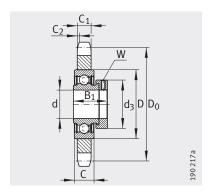

KSR..-L0..-22

Таблиц	Таблица размеров · Размеры в мм													
Зубчат зацепл		Условное обозначение ³⁾⁵⁾	Macca	Размер	ЭЫ								Для цепи, соответ- ствующей	
p ¹⁾	z ²⁾		m	d ⁴⁾	C ₁	D ₀	D _k	C _{2 min}	D	В	С	R	DIN 8187	DIN 8188
3/8	20	KSR16-L0-06-10-20-08	≈кг 0,14	16,2	5,2	60,9	65	0,8	40	18,3	12	_	*	_
1/ ₂	16	KSR16-L0-08-10-16-08	0,14	16,2	7	65,1	70,5	1,1	40	18,3	12		*	_
/2	10	KSR16-L0-08-10-16-08	0,14	16,2	7	65,1	70,5	1,1	40	18.3	12	_	*	*
		KSR16-L0-08-10-16-22	0,14	16,2	7	65,1	70,5	1,1	40	18,3	18,1	48	*	*
	18	KSR16-L0-08-10-18-08	0,21	16,2	7	73,1	78,6	1,1	40	18,3	12	_	*	_
		KSR16-L0-08-10-18-09	0,21	16,2	7	73,1	78,6	1,1	40	18,3	12	_	*	*
		KSR16-L0-08-10-18-16	0,21	16,2	7	73,1	78,6	1,1	40	18,3	12	_	*	*
⁵ / ₈	14	KSR16-L0-10-10-14-08	0,21	16,2	8,7	71,3	78	1,3	40	18,3	12	_	*	*
, 0	17	KSR16-L0-10-10-17-08	0,32	16,2	8,7	86,4	93,1	1,3	40	18,3	12	_	*	*
		KSR16-L0-10-10-17-09	0,32	16,2	8,7	86,4	93,1	1,3	40	18,3	12	_	*	*
		KSR16-L0-10-10-17-22	0,26	16,2	8,7	86,4	93,1	1,3	40	18,3	18	48	*	*
3/4	13	KSR16-L0-12-10-13-08	0,33	16,2	10,5	79,6	87	1,5	40	18,3	12	_	*	*
·		KSR16-L0-12-10-13-16	0,33	16,2	10,5	79,6	87	1,5	40	18,3	12	_	*	*
	15	KSR16-L0-12-10-15-08	0,42	16,2	10,5	91,6	99,2	1,5	40	18,3	12	_	*	*
		KSR16-L0-12-10-15-09	0,42	16,2	10,5	91,6	99,2	1,5	40	18,3	12	_	*	_
		KSR16-L0-12-10-15-22	0,36	16,2	10,5	91,6	99,2	1,5	40	18,3	18	48	*	*
	17	KSR16-L0-12-10-17-15	0,58	16,2	10,5	103,7	111,4	1,5	40	18,3	12	_	*	*
		KSR16-L0-12-10-17-16	0,58	16,2	10,5	103,7	111,4	1,5	40	18,3	12	-	*	*
1	12	KSR20-L0-16-10-12-15	0,7	20	15,3	98,1	107,6	2	47	17,7	14	_	*	*
		KSR20-L0-16-10-12-16	0,7	20	15,3	98,1	107,6	2	47	17,7	14	_	*	-
11/4	9	KSR25-L0-20-10-09-16	0,8	25	17,6	92,8	103	2,5	52	21	15	_	*	*
	13	KSR25-L0-20-10-13-15	1,6	25	17,6	132,7	144	2,5	52	21	15	-	*	*

p = шаг зубьев звездочки.

Допуск отверстия

H,				
Конструктивный ряд	Отверстие d	Допуск		
	MM	MM		
KSRL0	16,2	0		
		+0,1		
	20 – 25	0		
		-0,01		



z = число зубьев.

 $^{^{3)}}$ Индексы материалов см. в разделе «Индексы материалов», стр. 1314.

⁴⁾ Допуск отверстия d, см. в таблице.

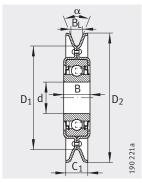
 $^{^{5)}}$ Состав условного обозначения – см. пример, стр. 1317, сноска $^{4)}$.

KSR..-B0

Таблиц	Таблица размеров · Размеры в мм														
Зубчато зацепл	ение	Условное обозначение ^{3) 4)}	Macca	Размер	азмеры								W	Для цепи, соответ- ствующей	
p ¹⁾	z ²⁾		m ≈кг	d 0 +0,018	C ₁	D ₀	D _k	C _{2 min}	D	B ₁	С	d ₃ макс.		DIN 8187	DIN 8188
³ / ₈	20	KSR15-B0-06-10-20-08	0,18	15	5,2	60,9	65	0,8	40	28,6	12	28	3	*	-
1/2	16	KSR15-B0-08-10-16-08	0,21	15	7	65,1	70,5	1,1	40	28,6	12	28	3	*	-
	18	KSR20-B0-08-10-18-08	0,32	20	7	73,1	78,6	1,1	47	31	14	33	3	*	*
		KSR20-B0-08-10-18-15	0,32	20	7	73,1	78,6	1,1	47	31	14	33	3	*	*
	19	KSR25-B0-08-10-19-08	0,29	25	7	77,1	82,5	1,1	52	31	15	37,3	3	*	*
⁵ / ₈	14	KSR15-B0-10-10-14-08	0,26	15	8,7	71,3	78	1,3	40	28,3	12	28	3	*	*
	17	KSR20-B0-10-10-17-15	0,41	20	8,7	86,3	93,1	1,3	47	31	14	33	3	*	*
3/4	13	KSR15-B0-12-10-13-08	0,4	15	10,5	79,6	87	1,5	40	28,6	12	28	3	*	*
	15	KSR20-B0-12-10-15-16	0,47	20	10,5	91,6	99,2	1,5	47	31	14	33	3	*	*
1	10	KSR20-B0-16-10-10-15	0,5	20	15,3	82,3	89,4	2	47	31	14	33	3	*	_
	15	KSR30-B0-16-10-15-15	1,34	30	15,3	122,2	131	2	62	35,7	18	44	4	*	_

p = шаг зубьев звездочки.

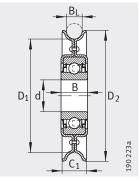
- 15 диаметр отверстия подшипника;
- ВО закрепляемый подшипник с эксцентриковым закрепительным кольцом,
- конструктивный ряд RAE..-NPP; 06 шаг зубьев звездочки 1/16", индекс шага;
- 10 индекс цепи (индекс ширины или принадлежность к стандарту);
- число зубьев;индекс материала (металлокерамика).



 $^{^{2)}}$ z = число зубьев.

 $^{^{3)}}$ Индексы материалов – см. стр. 1314.

⁴⁾ Состав условного обозначения на примере **звездочки натяжителя цепи KSR15-B0-06-10-20-08:** KSR звездочка натяжителя цепи;


Ролики натяжителей ремня

RSRA..-LO, RSRA..-KO Конструктивный тип А

RSRB..-LO Конструктивный тип В

RSRD..-L0 Конструктивный тип D

Табл	Таблица размеров · Размеры в мм												
Тип	Условное обозначение	Macca	Разм	леры					Угол	Размеры клинового	Грузоподъемность ²⁾		
		m	d ¹⁾	D ₁	D ₂	В	C ₁	B _L	α	ремня согласно DIN 2 215 (ISO 1 081, ISO 4 183, ISO 4 184) и DIN 7 753,часть 1	дин. С _r	стат. С _{0r}	
	DCD445 00 LO	≈кг	4.5	(4.6	00	4.4.4	20	12 (0	(ISO 4 184)	H 7.600	H	
Α	RSRA15-90-L0	0,24	15	61,6	90	14,4	20	12,4	32	8, 10, (12,5)	7 600	3 700	
	RSRA17-102-K0-AH01	0,42	17	70,8	102	12	22,2	12,7	34	8, 10, (12,5)	9 800	4750	
	RSRA13-129-L0-L114 ³⁾	0,56	13	73,7	129	18,3	32	22,1	32	13, 17, 20, 22	9 800	4750	
	RSRA16-129-L0	0,54	16	73,7	129	18,3	32	22,1	32	13, 17, 20, 22	9 800	4750	
	RSRA16-186-L0	1,11	16	130,8	186	18,3	32	22,1	32	13, 17, 20, 22	9 800	4750	
В	RSRB15-92-L0	0,31	15	76,2	92	14,4	31	22,2	10	-	7 600	3 700	
	RSRB13-117-L0	0,5	13	101	117	18,3	36	25,4	10	_	9 800	4750	
	RSRB16-117-L0	0,48	16	101	117	18,3	36	25,4	10	-	9 800	4750	
	RSRB13-159-L0	0,8	13	139,7	159	18,3	36,5	25,4	10	_	9 800	4750	
	RSRB16-159-L0	0,78	16	139,7	159	18,3	36,5	25,4	10	-	9 800	4750	
	RSRB16-222-L0	1,45	16	203	222	18,3	50	38	10	_	9 800	4750	
D	RSRD25-150-L0	0,83	25	133	154	21	24	17	-	-	14 000	7 800	

 $[\]overline{\text{Допуск отверстия d см. в таблице.}}$

Допуск отверстия

Отверстие d	Допуск
MM	мм
13	+0,08 -0,05
15	0 -0 , 08
16	+0,26 +0,13
17	0 -0,008
25	0 -0,01

²⁾ Грузоподъемность подшипника.

³⁾ Подшипник заполнен консистентной смазкой L114 (GA47).

По вопросам продаж и поддержки обращайтесь:

Алматы (727)345-47-04 Ангарск (3955)60-70-56 Архангельск (8182)63-90-72 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Благовещенск (4162)22-76-07 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Владикавказ (8672)28-90-48 Владимир (4922)49-43-18 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89

Россия +7(495)268-04-70

Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Коломна (4966)23-41-49 Кострома (4942)77-07-48 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Курган (3522)50-90-47 Липецк (4742)52-20-81

Казахстан +7(727)345-47-04

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Ноябрьск (3496)41-32-12 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Петрозаводск (8142)55-98-37 Псков (8112)59-10-37 Пермь (342)205-81-47

Беларусь +(375)257-127-884

Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Саранск (8342)22-96-24 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Сыктывкар (8212)25-95-17 Тамбов (4752)50-40-97 Тверь (4822)63-31-35

Узбекистан +998(71)205-18-59

Тольятти (8482)63-91-07 Томск (3822)98-41-53 Тула (4872)33-79-87 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Улан-Удэ (3012)59-97-51 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Чебоксары (8352)28-53-07 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Чита (3022)38-34-83 Якутск (4112)23-90-97 Ярославль (4852)69-52-93

Киргизия +996(312)96-26-47